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ABSTRACT. This work deals with the simulation of the fatigue crack growth [FCG] in 
bonded joints. In particular a cohesive damage model is implemented in the commercial 
software Abaqus, in order to take into account for the damage produced by fatigue 
loading. The crack growth rate is evaluated with a Paris-like power law expressed in 
terms of strain energy release rate. The crack growth rate is then translated into a 
variation of the damage distribution over the cohesive zone setting an equivalence 
between the increment of crack length and the increment of damage. The model takes 
also into account mixed mode I/II conditions, using the Kenane e Benzegaggh theory. In 
this work the validity of the model is tested by comparison with theoretical trends for 
conditions of pure mode I, pure mode II and mixed mode ratio. The results of the model 
are in very good agreement with the expected trends, therefore the model is adequate to 
simulate the fatigue crack growth behaviour of bonded joint. 
 
 
INTRODUCTION 
 

It is largely established that fatigue is at the basis of most structural failures. 
Especially in the case of damage tolerant or fail safe design, it is necessary to know how 
cracks, or in generally defects, propagate during the component service life. A 
relationship between the loading state of the component and the fatigue crack growth 
(FCG) rate of a defect is therefore necessary. This relationship was given by Paris [1] in 
terms of crack growth rate as a function of the stress intensity factor, K. In the case of 
polymers and adhesives it is traditionally written as a function of the range of applied 
strain energy release rate (∆G) using the equation 

 

 mGC
dN
dA

Δ=  (1) 

 
where C and m are parameters depending on the material and loading mixity ratio and A 
is the defect area. This method allows to predict the growth of a defect under fatigue 
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loading, but it can be easily used only in the case of simple geometries. In real 
applications instead, the strain energy release rate can only be computed numerically 
with the help of, for example, Finite Element (FE) simulation. The prediction of the 
crack growth can be carried out by dividing the analysis in steps, each corresponding to 
user-defined crack growth increment. This method generally requires a remarkable 
amount of time.  

On the opposite, the cohesive zone model is extensively used for the prediction of 
fracture propagation under quasi-static conditions, especially in the case of bonded 
joints and delamination in composites [2,3].  

 

          
 

Figure 1. Example of a triangular cohesive law. 
 

This model consists simply of a relationship between the normal (tangential) stress 
and the opening (sliding) of crack faces over a region ahead of the physical crack tip, as 
shown in Fig. 1. The relationship can be assumed in several different ways: in the 
example of Fig. 1, the relationship has a triangular shape. Initially it is linearly 
increasing with a stiffness K0 until a value of opening equal to δ0, then decreasing until 
the critical opening δC in order to represent damage evolution up to failure. In this phase 
the stiffness K is degraded with respect to the initial one, K0, in the following way: 

 
 ( ) 01 KDK −=  (2) 
 

where D is a state variable representing damage. In literature, a certain number of works 
can be found dealing with the simulation of the fatigue crack propagation using the 
cohesive zone model [4-8]. In particular the traditional definition is modified in order to 
take into account for the damage due to the fatigue loading: in other words, the damage 
is not only dependent by the opening, but also by the number of cycle. For example 
Maiti and Geubelle [6] defined a relationship between the stiffness and the number of 
cycles in terms of a two-parameters power law. Roe and Siegmund [5] instead, 
simulated the crack growth at an interface, using a cycle by cycle simulation where 
damage is incremented according to the stress level reached in the previous cycle. In 
both cases, model parameters have always to be identified by comparison of FCG 
simulation and experiments, with possible limitations on the transferability to cases 
different from those on which identification was made. The model proposed by Turon et 
al. [4] instead does not require parameter identification: in this case only the cohesive 
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law identified from quasi-static fracture tests and the coefficients of the Paris law of 
FCG tests are needed. However this model was implemented only in the case of 
geometries where the strain energy release rate could be computed analytically and it 
was not dependent on the crack length. 

This work starts from the framework presented by Turon et al. [4], but it is extended 
for any 2D geometry. Moreover, mixed mode criteria were introduced respectively for 
the cohesive zone in terms of traction-separation law and for the fatigue crack growth 
rate using the Kenane and Benzegaggh theory [9]. 

 
 

THEORETICAL APPROACH 
 

First of all is necessary to define the significance of the damage D in terms of real 
phenomenon. Referring to the Continuum Damage Mechanics theory [10], the damage 
D  can be written as the ratio 
 

 
e

d

A
AD =  (3) 

 
where, taking as reference a representative interface element, Ae is the effective area of 
the element, while Ad is the damaged area (produced by voids or cracks). The increment 
of D associated with an increment of Ad, can be therefore written as: 
 

 
ed AdA

dD 1
=  (4) 

 
In a FE simulation of the adhesive layer using cohesive elements, Ae is the area 

associated with an integration point (IP) of these elements.  An increment of the crack 
extension (dA) can be written as the sum of the increment of Ad of all the IPs lying in 
the cohesive zone (ACZ), yielding 
 

 ∑
∈

=
CZAi

i
ddAdA  (5) 

 
therefore, the increment of the crack length with the number of cycle can be written as 
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 (6) 

 
where ddA  is the average of the i

ddA over ACZ and nCZ is the number of IPs lying in ACZ, 
therefore it can be written as the ratio between the dimension of ACZ and the average 
area associated to the IPs (Ae).  
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Using Eqns. 1, 4 and 6 the increment of damage with the number of cycles is: 
 

 m

CZCZCZ

e
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d
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dD

Δ====
111  (7) 

 
The Eq. 7 allows to write the increment of damage at an IP as a function of the range 

of applied strain energy release rate. This procedure was demonstrated to give good 
result in pure mode I and pure mode II FCG analysis [11]. 

With the aim to extend this model to mixed mode I/II conditions, some more 
considerations have to be done. First of all a mixed mode cohesive law has to be 
defined.  

 

 
 

Figure 2. Representation of the mixed mode cohesive law. 
 
Referring to 4, the equivalent opening is defined as 

 

 ( )22

2
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2
δ

δδ
δ +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
=eq  (8) 

 
and starting from the cohesive laws in pure mode I (defined using the parameters σmax1, 
δ01 and δC1) and pure mode II (defined using the parameters σmax2, δ02 and δC2) the 
mixed mode law can be expressed making use of Eqs. (9-11). 

In Eq. 9 the equivalent strain energy (Ueq) is defined as the sum of the strain energies 
(U1 and U2) associated to the single components 
 

 ( ) 02
2
201

2
110

2
21 5.05.05.0 KKKUUU eqeqeq ⋅⋅+⋅+⋅=⋅⋅=+= δδδδ  (9) 

 
In this equation appear the initial stiffness values (K0i) for the mode 1 (i=1) mode II 

(i=2) and the mixed mode (i=eq). 
Another equation is needed for damage nucleation: this condition is obtained when 
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The last equation is needed for the calculation of the mixed mode cohesive energy, 

that is the area underling the mixed mode cohesive law (ΓTC), computed using the 
Kenane and Benzeghagg theory [12] as a function of the areas of the pure mode I (ΓI) 
and pure mode II (ΓII), 
 

 ( ) mm
IIIITC MM⋅Γ−Γ+Γ=Γ  (11) 

 
In the last equation MM is the ratio between the strain energy in mode II and the total 

strain energy for each IP, and mm is a parameter depending on the material. Eqns. 9, 10 
and 11 allow to completely define the shape of the mixed mode cohesive law. 

It is necessary also to define a mixed mode Paris-like law. Using the Kenane and 
Benzegaggh theory concerning the mixed mode fatigue propagation, the fatigue crack 
growth can be in general written as 

 

 dGB
dN
dA

Δ=  (12) 

 
where the parameters B and b depend from the mixed mode ratio. In particular they can 
be written using the following equations: 
 

 ( ) ( )md
IIII MMdddd ⋅−+=  (13) 

 ( )( )mB
IIIII MMBBBB −−+= 1lnlnlnln  (14) 

 
where dI, BI and dII, BII are respectively the parameters of the Paris-like law in pure 
mode I and pure mode II, respectively, and mB and md are material parameters. 
 

 
 

Figure 3. Schematic representation of the algorithm used for the crack growth 
simulation. 
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IMPLEMENTATION INTO THE FE SOFTWARE  
 

The procedure written previously is implemented in the commercial software 
Abaqus, using external subroutines interacting with the analysis solver. The analysis is 
divided in increments and each increment is assigned a number of cycles using the 
algorithm shown in Fig. 3.  

For a generic increment (j), the number of accumulated cycle is equal to jN , and the 
damage for a generic IP (i) is equal to j

iD . Afterwards a maximum value of increment 
of the damage within the analysis increment ( j

iDΔ ) is assigned for each IP as the 
minimum between the increment needed to reach D=1 (failure) and a user-defined value 

maxDΔ . 
 

 
max

maxmax

-1 if1

-1 if

DDDD

DDDD
j

i
j

i
j

i

j
i

j
i

Δ<−=Δ

Δ>Δ=Δ
 (15) 

 
In the same increment a dedicated subroutine calculates ΔG as the contour integral 

over a path surrounding the cohesive zone (in Abaqus the contour integral is not 
available for cohesive elements meshes). 

From maxDΔ  and ΔG, a number of cycle j
iNΔ  is computed for each IP using Eq. (7). 

The subroutine looks for the minimum among the j
iNΔ  of the IPs within the cohesive 

zone, jNminΔ , which is then set to be the number of cycle of the increment. Finally, the 
number of cycle ( 1+jN ) and the damage distribution ( 1+jN ) are updated. 
 

L
a

P

   a)     b) 

c) 
 

Figure 4. Tested geometries: a) DCB, b) ELS and c) MMENF. 
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FINITE ELEMENT SIMULATION 
 

In order to verify the accuracy and the robustness of the model, it is tested for 
different joint geometries characterized by different mixed mode ratios. In particular, 
pure mode I condition are simulated with a Double Cantilever Beam (DCB) geometry, 
pure mode II conditions with an End Loaded Split (ELS) geometry and mixed mode I/II 
conditions with a Mixed Mode End Notched Flexure (MMENF) geometry as shown in 
Fig. 4. The adherends material is supposed to be aluminium with a Young modulus 
equal to 70’000MPa and a Poisson’s ratio equal to 0.3.  

The material parameters are taken from literature [4], for both the cohesive law and 
fatigue crack propagation. These are shown in Tab. 1 together with the applied load and 
the specimens dimensions.  
 
Table 1. Parameters of the cohesive model and Paris-like law for pure mode I and pure 

mode II, along with the mixed mode parameters [4], together with the specimens 
dimensions and the applied load for unity of thickness. 

 
Parameter Mode I Mode II   Parameter Value  
Г [N/mm] 0.266 1.002   mm 2.6  
σmax [MPa] 30 30   md 1.85  
δ0 [mm] 0.003 0.003   mB 0.35  
δC [mm] 0.0173 0.066      

B 0.0616 4.23   DCB ELS MMENF 
d 5.4 4.5  P [N/mm] 20 20 25 

∆Gth [N/mm] 0.06 0.1  a [mm] 60 92 17 
    h [mm] 10 10 5 
    L [mm] 335 335 130 

 
RESULTS 
 

The results of the simulations are compared with the analytical trends obtained by 
Eq. 12-14, where MM=0 in case of DCB, MM=1 in case of ELS and MM=0.4 in case 
of MMENF (this value is computed from GI and GII obtained using the virtual crack 
closure technique for the initial crack length). The comparison is shown in Fig. 5 for the 
three geometries. It can be noticed that for pure mode I or pure mode II the two sets of 
data are in very good agreement with each other over the entire range considered. For 
the mixed mode I/II condition instead, the simulation seems to overestimate slightly the 
reference trend. This occurs because the reference trend considers a constant mixed 
mode ratio over the entire range, while during the propagation, when the crack 
approaches the midpoint, the value of MM slightly increases, and this variation is 
captured by the simulation. 
 
CONCLUSIONS 
In this work a procedure based on the cohesive damage model is developed for the 
simulation of fatigue crack growth in bonded joints for different mixed mode I/II 
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conditions. It is completely automated, i.e. the fatigue crack propagation simulation is 
performed in a unique. The procedure is validated by comparison with analytical trends 
for different mixed mode conditions, giving very good result. Further enhancement will 
concern the extension of the procedure to 3D models. 
 

            
 

 
 

Figure 5. Comparison between analytical and simulated trends for the tested geometries. 
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