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ABSTRACT. Torsion tests are widely used to investigate the elastoplastic behaviour of 
metallic materials, particularly when large strains are involved, up to the specimen’s 
fracture. Such tests induce multiaxial inhomogeneous stress/strain and damage fields 
into the specimen. In this paper, elastoplastic torsion at room temperature of uniform 
isotropic circular solid and tubular metallic specimens is investigated in the finite strain 
range, both in analytical and numerical forms. The paper reports preliminary results of 
an on-going research project at the University of Bergamo [1]. Particular emphasis is 
given to the evaluation of the so-called Poynting (in the elastic domain) and Swift (in 
the plastic range) effects [2,3], i.e. the recorded axial length variation of the specimen 
that may appear under free-end torsion.  
 
 
INTRODUCTION 
 
The analytical investigation has been carried-out within the elastic range and just for the 
case of fixed-end torsion, both for tubular and solid specimens, by assuming a priori a 
kinematic field for the response of the torsion specimen. Special attention is given to the 
outcomes that arise from the adoption of three different objective stress rates, namely 
Cotter-Rivlin, Truesdell and Jaumann-Zaremba stress rates, particularly when large 
strains are involved. The numerical investigation is carried-out for the whole torsion 
test, up to fracture separation, for both tubular and solid specimens and for both fixed- 
and free-end conditions, taking into consideration several hardening models and a 
damage model. Numerical results are based and compared with data available in [4]. 
 
 
ANALYTICAL RESULTS 
 
A kinematic field for the specimens under fixed-end torsion is assumed, which applies 
to both solid and tubular specimens. Because of the axisymmetry of the specimen, a 
cylindrical coordinate system is adopted. Upper case letters (R, Θ, Z) denote the initial 
radial, angular and longitudinal coordinates at any point of the specimen, gathered in 
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vector �� � �R, Θ, Z	. Conversely, lower case letters (r,θ,z) and vector 
� � �r, θ, z	 
denote the corresponding current coordinates. 

The twist angle at the generic cross-section is denoted by α and is assumed to be a 
linear function of time t and longitudinal coordinate Z: 
 

α�Z, t� � β�t�Z � β� tZ ,                                                   (1) 
 
where β�t� is the twist angle per unit initial length, with assumed constant time 
derivative β� . The longitudinal coordinate z(Y,t) is assumed to remain always equal to its 
initial value Z; this hypothesis is inspired by the condition of fixed-end torsion and 
automatically copes with it. For the sake of simplicity, it is also assumed that the 
specimen deforms (elastically) at constant volume. Thus, the radial coordinate r(Y,t) 
also keeps equal to its initial value R. The current angular coordinate θ(Y,t) can be 
expressed in the form θ��, t� � Θ � α � Θ� β� tZ. According to all made assumptions, 
the kinematic field can be resumed as follows: 
 
                                                      r��� � R 
 θ��, t� � Θ � β� tZ     .                                                (2) 
                                              
                                                      z��� � Z 
 

By denoting with γ � βR the shear strain field (axisymmetric and linear in R) and 
with γ�  its time derivative, it is possible to derive, from the kinematic field (2), the 
expressions of deformation gradient F, velocity deformation gradient � � � � �, rate 
of deformation D and spin tensor W: 
 

��� � �1 0 00 1 γ0 0 1� ,   ��� � �0 0 00 0 γ�0 0 0� ,   ��� � !0 0 00 0 "�#0 "�# 0$ ,   ��� � !0 0 00 0 "�#0 % "�# 0$ .  (3) 

 
The stress response, in rate form, at any point of the specimen can be obtained by the 

following assumed elastic isotropic constitutive law: 
 '� ()* � λtr���, � 2G� � 2G� ,                                          (4) 
 
where λ and G are the first and second Lamé constants, , is the 2nd-order identity 
tensor and '� ()* denotes any appropriate objective stress rate of the Cauchy stress '. In 
the present paper the following Cotter-Rivlin '� /0, Truesdell '� �0 and Jaumann-Zaremba '� 12 objective stress rates are employed and their outcomes confronted: 
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'� /0 � '� � �� · ' � ' · � ,                                              (5) 
 '� �4 � '� % � · ' % ' · �� � tr���' ,                                     (6) 
 '� 12 � '� %  � · ' � ' · � .                                             (7) 
 

An ODE (Ordinary Differential Equation) system with solution for the Cauchy 
stress ' is obtained by putting objective stress rates (5)-(7) into the constitutive law (4), 
as showed in details in [1]. The corresponding analytical integration leads to the 
following expressions of the Cauchy stress ', according to the three assumed objective 
stress rates. 
 

�'�/0 � �0 0 00 0 γ� Gt0 γ� Gt %γ� #Gt#� ,                                             (8) 

 �'��4 � �0 0 00 γ� #Gt# γ� Gt0 γ� Gt 0 � ,                                               (9) 

 

�'�12 � 50 0 00 γ� #G�cos�γ� t� % 1� G sin�γ� t�0 G sin�γ� t� γ� #G�1 % cos�γ� t��; .                         (10) 

 

The following graphs, reported in Fig. 1, present the analytical results in the form of 
three plots, namely the evaluated torque, outer shear stress and outer longitudinal stress 
vs. twist angle, by taking into consideration the same tubular specimen characteristics 
and the same torsion velocity as reported in [4]. The analysis is run up to 10 revolutions, 
i.e. 62.83 radiants, to evaluate the elastic response at large strains, for hypothetical 
illimited elastic behaviour (no material yielding). Similar trends stand as well for solid 
specimens, with results that differ only for the dissimilar internal radius. The results will 
be further commented in the Conclusions. 
 

 
 

Figure 1. Analytical results for tubular specimens under fixed-end torsion: red curve for 
Cotter-Rivlin, black for Truesdell and blue for Jaumann-Zaremba stress rates. 
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NUMERICAL RESULTS 
 

The numerical simulations are carried-out with 3D tetrahedral elements, using the 
Jaumann-Zaremba stress rate, according to an implementation that is available within 
the adopted FEM code (ABAQUS). Torsion is imposed to the FE specimen by means of 
two rigid studs, one fixed at one end and the other rotating at the other end with respect 
to the longitudinal axis of the specimen. The definition of a reference point for both 
studs makes easier the imposition of their motion, whether constraint or rotation must 
be imposed. Experimental observations in [4] determine that failure for tubular 
specimens manifests itself roughly at around 3.84 rad (220°) and for solid specimens at 
about 5 rad (287°). Thus, twist angles of 4.71 rad (270°) and 6.28 rad (360°) have been 
recognized as reasonable terms for the simulations in the two cases. The material 
properties adopted in the FEM models are derived by the tensile tests exposed in [4], for 
the AISI 1020 steel used therein. Same, all other characteristic parameters, such as 
specimen’s geometrical properties and applied torsion velocity are taken from [4]. 
Worth-noting geometrical properties are the gauge length of 16 mm, for both specimens 
and the external radius of the gauge section, of 6 and 5 mm for tubular and solid 
specimens, respectively. 

First, preliminary simulations have been carried-out to outline a coherent meshing 
procedure, with the goal of obtaining accurate-enough results at reasonable CPU time. 
The tubular specimen is discretised with 55643 elements and 12191 nodes, while the 
solid specimen, of smaller dimensions, is assembled with 33551 elements and 6601 
nodes. Second, several hardening models have been investigated: 1) perfectly-plastic; 2) 
isotropic hardening; 3) linear kinematic hardening; 4) combined hardening (considering 
both isotropic and non-linear kinematic hardening); 5) combined hardening with 
damage and FE removal, to account for specimen’s failure and consequent sudden 
torque drop. Thus, five different cases are examined for each condition, i.e. tubular vs. 
solid and free- vs. fixed-end. The implicit solver has been used for the first four 
hardening cases, whereas for the last case, which includes damage failure, the explicit 
solver has been employed. Carried-out preliminary simulations ensured that the implicit 
and explicit solvers were giving tight results, except for second-order oscillatory trends 
due to spurious dynamic effects that arise with the explicit solver. Following Figure 2 
reports sample outcomes of the FE simulations for tubular specimens. 
 

 
 

Figure 2. FE simulation of tubular specimens under free-end conditions: (a) Assembled 
model under torsion; (b) Swift effect; (c) Separation fracture. 

(a) (b) (c) 
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Results for tubular specimens are presented in Fig. 3, by means of six graphs, taking 
into consideration both fixed- and free-end tests. The torque, axial force and axial 
elongation are evaluated at the reference point of the rotating stud, while the outer shear 
stress is evaluated as an average within two outer elements located in the center of the 
specimen. Different colours represent the five constitutive models taken into 
consideration: 1) red for perfectly-plastic; 2) blue for isotropic hardening; 3) orange for 
linear kinematic hardening; 4) green for combined hardening; 5) purple for combined 
hardening with damage. When experimental data from [4] are available, they are scored 
by a dotted black line; it must be remarked that these data always refer to fixed-end tests 
only.  

 

 

  
 

Figure 3. Numerical results for tubular specimens: fixed-end results in the left column; 
free-end results in the right column. 
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The same six graphs, in the same order but for solid specimens, are then presented in 
following Fig. 4. 
 

  

  

 
Figure 4. Numerical results for solid specimens: fixed-end results in the left column; 

free-end results in the right column. 
 
Figure 5 presents a direct comparison between fixed- and free-end tests for tubular 

specimens, in terms of torque and outer shear stress vs. twist angle. It shows the small 
difference that appears between the two cases, which differ only for a little surplus of 
torque and shear stress for fixed-end results. Similar trends hold as well for solid 
specimens. 
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Figure 5. Direct comparison between fixed- (dotted lines) and free-end (solid lines) tests 

for tubular specimens. 
 

Figure 6 presents a direct comparison between results for tubular and solid 
specimens in terms of axial force (for fixed-end tests) and axial elongation (for free-end 
tests) vs. twist angle, for the case of linear kinematic hardening, i.e. the one for which 
the Swift effect turns-out more susceptible. It shows clearly a strong difference between 
the two cases, with the tubular specimens that definitely display a higher Swift effect. 
 

 
 

Figure 6. Swift effect outcomes for tubular (dotted lines) and solid (solid lines) 
specimens (linear kinematic hardening case). 

 
CONCLUSIONS 
 
From the analytical results it is possible to advance first important considerations on the 
validity of the three considered objective stress rates. The Cotter-Rivlin stress rate 
induces the presence of a shear stress component, linear with time and of a negative 
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(compression) longitudinal stress component, quadratic with time. The Truesdell stress 
rate implies the presence of the same previous shear stress component, but does not set 
a longitudinal stress component, while it determines instead a hoop stress component, 
positive and quadratic with time. The Jaumann-Zaremba stress rate outcomes in shear, 
longitudinal and hoop stress components but with oscillatory trends in time. This fact 
does not appear coherent with reality and seems to point-out the unsuitability of the 
Jaumann-Zaremba stress rate, at least in the examined elastic range. This confirms 
results obtained by different researchers under elastic simple shear, as cited in [1]. It can 
be concluded that the Cotter-Rivlin objective stress rate sets the best results, considering 
both shear and longitudinal stress components, while the Truesdell rate fails in setting a 
longitudinal stress component. Further, preliminary investigations under way show that 
the three objective stress rates behave differently in the elastoplastic range. In particular, 
the Jaumann-Zaremba objective stress rate does not set oscillatory trends in this case, 
for none of the three non-zero stress components. 

Numerical results show a quite good correspondence in terms of the torque vs. twist 
angle response of the specimen, with case-to-case variations due to the different 
hardening model considered. In particular, the results for tubular specimens with 
combined hardening and damage reproduce almost perfectly the experimental data 
in [4]. It has to be emphasized that no explicit fitting attempts have been made here. The 
results are obtained merely by using the tensile data exposed in [4]. The only exception 
is for the damage model parameters, which have been suited to capture the breaking 
point of the experimental data for the tubular specimens. For what it concerns the Swift 
effect, it is interesting to note that it arises in all five examined cases, although with 
different magnitudes, which clearly state a sensitivity of the Swift effect on the assumed 
elastoplastic constitutive model.  

On the base of the obtained analytical and numerical results, it seems reasonable to 
conclude that the Poynting/Swift effect manifests itself due to the finite strain 
kinematics of the torsion test, which determines the onset of a longitudinal stress 
component in the fixed-end test and of an axial elongation in the free-end test. This 
consideration confirms what is suggested by Billington in [3]. Moreover, the fact that 
the Swift effect arises for all five examined hardening cases could lead to think that 
further potential causes of its manifestation, like e.g. material anisotropy of the 
specimen, stress-induced anisotropy or hardening, may play a secondary role in this 
sense, acting more as magnitude parameters rather than causes.  
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