
An Alternative Measure for the Shear Stress Amplitude in 

Critical Plane Based Multiaxial Fatigue Models  
 
 

A. P. Dantas, J. A. Araújo, E. N. Mamiya, F.C. Comes & J.L.A. Ferreria   
   
Department of Mechanical Engineering, University of Brasília,Brasília,DF, Brazil. 

alex07@unb.br  

 

 

ABSTRACT. The goal of this work is to propose and to assess an alternative measure 

for the shear stress amplitude in critical plane based multiaxial fatigue criteria. Usually 

such amplitude is characterized by the radius of the minimum circle circumscribing the 

shear stress history in a material plane. Here, an alternative measure which considers 

the maximum circumscribed rectangle (MCR) in terms of its Frobenius norm is 

considered. The computation of the shear stress amplitude by the minimum circle and 

by the maximum rectangle was conducted for a number of experimental data available 

in the literature involving proportional and nonproportional stress paths. Then a 

critical plane criterion was invoked to estimate the fatigue endurance based on such 

values. It is shown that the multiaxial fatigue estimates were improved for most data 

evaluated when the shear stress amplitude was computed in terms of the maximum box. 

Some critical assessment concerning the classical definition of the critical plane was 

also addressed in this work.  

 
 

INTRODUCTION   
 

Design of mechanical components under combined loadings to operate in High Cycle 

Fatigue (HCF) regime often relies on the predictive capabilities of multiaxial models. In 

such cases, stress based criteria are appropriate and a number of such models, proposed 

under different approaches, are available [1]. One approach that has gained increasing 

interest is the critical plane one. It requires the computation of the shear stress vector 

history at each possible plane passing through a material point. Usually, the plane 

experiencing the greatest amplitude of shear stress is defined as the critical plane. The 

influence of mean normal stresses is also considered. Findley [2], McDiarmid [3], and 

Susmell and Lazzarin [4] have proposed stress based critical plane criteria. Drawbacks 

associated with this approach involve the most appropriate manner to define the shear 

stress amplitude, the cost to search for the critical material plane, and the fact that it is 
usual to find situations where the amplitude of the shear stress is basically the same for 

a number of planes, while the mean normal stress acting on these same planes vary a 
lot. In this paper such drawbacks are addressed by the proposition of an alternative 

measure for the shear stress amplitude.  
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SHEAR STRESS AMPLITUDE IN CRITICAL PLANE APROACHES 
 

Basic Concepts 

Consider a mechanical element submitted to oscillatory multiaxial loadings. At each 
time instant a given material point O  located on the surface of the loaded element is 

subjected to internal forces represented by the Cauchy stress tensor ( )Ot,T . Consider 

now, a material plane characterized by its unit normal vector n , passing through point 

O . This is in turn described by its spherical angles φ  and θ , as shown in Fig. 1(a).  

Cauchy’s theorem establishes that the stress vector t  acting on O  depends on the 

material plane orientation: 

 

( ) ( )t t=t T n .            (1) 

 

And its normal and shear stress components are given by: 

 

( )( ) ( )t t= ⋅σ T n n n .           (2) 

 

( ) ( ) ( )t t t= −τ T n σ .           (3) 

 

While the computation of the amplitude and mean values of ( )tσ  is a straightforward 

task, as such vector function varies in magnitude but not in direction, the same can not 

be said about the calculation of these quantities associated to the shear stress vector 

path, Ψ  (Fig. 1(a)).  

 

 

Alternative Measure to Compute the Shear Stress Amplitude in a Material Plane 

A classic methodology to compute the shear stress amplitude, aτ , in a material plane 

was proposed first by Dang Van et al. [5] and later by Papadopoulos [6]. In this method 

aτ is provided by the radius of minimum circle circumscribing Ψ (Fig. 2(a)). Space only 

precludes us to yield a more detailed explanation on the process to determine the 

Minimum Circumscribed Circle (MCC). Here only a brief overview will be provided. 

Basically the methodology consists of two steps. First, it is necessary to find the center 

of the MCC with respect to O , which corresponds to the mean shear stress, 
mτ . This is 

basically a min max type o problem: 

 

{ }*

*arg min max ( )m i
t

t= −
τ

τ τ τ ,           (4) 
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where ( )itτ is a vector element of the time discretized shear stress path Ψ , *
τ  is any 

shear vector on ∆  with origin in O  and •  denotes the vector norm. Next, the 

circumference with minimum radius is determined as: 

 

: max ( )
i

a i m
t

R tτ = = −τ τ .           (5) 

 

Althoug the MCC is unique and hence numerically constitutes a well posed problem 

there are some drawbacks associate to its use to calculate 
aτ . One of them is that the 

min max problem requires more elaborate algorithms to compute the center of the 
circumference, but perhaps more important is the fact that a proportional and a non-

proportional shear stress path in a material plane may be circumscribed by the same 

circunferece (Fig. 1(b)), i.e., the amount of damage provoked by these different stress 

paths would be equivalent. Experimental work on multiaxial fatigue have shown that 

depending on material and and type of solicitation, non-proportional load histories may 

be significantly more damaging than proportional ones [1].   

 

 
 

Figure 1. (a) Stress vector ( )tt , its normal, ( )tσ , and shear, ( )tτ , components in a 

material plane ∆  and Minimum Circumscribing Circle (MCC) to the shear stress vector 

path Ψ  projected on ∆ . (b) Drawbacks associated to the MCC method: a proportional 

and a non-proportional shear stress path with the same MCC. 

  

In this setting, a simple and alternative method to compute aτ is now proposed. We 

claim here that the shear stress amplitude, which correctly characterizes the solicitation 
to fatigue under multiaxial loadings, is given by the Maximum Circumscribed 

Rectangle (MCR) to the shear stress vector path in a material plane ∆  in terms of its 
Frobenius norm (Fig. 2(a)): 

 

( ) ( )2 2

1 2maxa a a
ϕ

τ ϕ ϕ= + ,           (6) 

 
where  
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( ) ( )
1

max , min , , 1, 2
2

i i i
tt

a t t iτ ϕ τ ϕ = − =
 

,   (7) 

 

correspond to half of the sides of a rectangle with orientation ϕ  circumscribing the 

shear stress path Ψ  (Fig. 2(b)). 
 

 
 

Figure 2. (a) Illustration of the Maximum Circumscribed Rectangle to the shear stress 

vector path. (b) Half sides ai, i = 1,2 of a rectangle with orientation ϕ  circumscribing 

the shear stress path Ψ  in a material plane.  

 

Critical Plane in Stress Based Multiaxial Fatigue Models 
Usually the critical plane in stress based multiaxial fatigue criteria has been classically 

defined as the material plane where the shear stress amplitude reaches its maximum 
value. However, such definition constitutes an ill posed problem in numerical terms as 

there are cyclic stress states where there are more than one material plane with 

maximum and identical values of aτ . As an example Fig. 3(a) depicts a graph of aτ for 

each material plane ( )θφ,  in a multiaxial state of stress. It can be clearly observed that 

there are four material planes with rigourously the same aτ value. To further illustrate 

such characteristic, one plots τa vs σn,max for each material plane 

( )1plane increments φ θ∆ = ∆ = °  in such stress state (see Fig. 3(b)). This graph shows 

there are a number of material planes experiencing nearly the same level of aτ , but with 

maximum normal stress to the plane varying from 50 MPa to 270MPa. In this setting, it 

seems sensible to consider that the fatigue solicitation will be more severe in a plane 

where (i) aτ is close to its highest value (but not necessarily the maximum) and (ii) 

max,nσ is more significant. In mathematical terms it is claimed here that the candidate 

plane is among the ones where aτ reaches 99% of its maximum value, being the critical 

one the plane with the largest max,nσ .  
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(a) (b) 

Figure 3. (a) Shear stress amplitude in a number of material planes ( )θφ,  for a 

multiaxial state of stress, (b) set of aτ  x max,nσ  points, each point representing such 

stresses in a material plane. 

 

The Modified Wohler Curve Method (MWCM) 
To evaluate the impact of the shear stress amplitude computation by the MCR and MCC 

approaches on the estimation of the multiaxial fatigue strength it is necessary to invoke 

an appropriate model. Susmel and Lazzarin [4] observed that the multiaxial high-cycle 

fatigue behaviour of metallic materials could successfully be predicted by using a 

simple aτ  vs. ,maxn

a

σ

τ
 relationship, where such a fatigue damage parameter had to be 

calibrated using material fatigue properties generated under simple loading conditions. 

In more detail, the MWCM can be formalised as follows [4]: 

 

( ) ( ),max
, ,

nc c c c

a

a

σ
τ φ θ κ φ θ λ

τ
+ ≤ .    (8) 

 

In the above equation, ( ),c c

aτ φ θ  is the shear stress amplitude in the critical plane 

( ),c cφ θ (as defined in the prior section), max,nσ  is the maximum stress perpendicular to 

this plane and, finally, κ  and λ  are material constants that can be obtained from two 

fatigue strengths generated under different loading conditions. For instance, if the 

uniaxial, 1f− , and the torsional, 1t− , fully-reversed plain fatigue strengths (at 2 x 10
6
 

cycles) are used to calibrate Eq. (8), constants κ  and λ  turn out be [3]: 

 

1
1

2

f
tκ −

−= − , 
1tλ −= .       (9) 

 

In order to evaluate the accuracy of the proposed methodology, the following error 

index was adopted: 
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( ) ( ),max, ,

(%) 100

nc c c c

a

ai

σ
τ φ θ κ φ θ λ

τ

λ

+ −

= ⋅ .   (10) 

 

A negative value of the above error index indicates that fatigue failure should not occur 
up to at 2 x 106 cycles. It is interesting to observe also that, from a engineering point of 

view, a negative value of the index is an indication of the fact that the component 
dimensions could be reduced down to the limiting condition given by (%) 0i = . 

 

 

EXPERIMENTAL DATA FROM LITERATURE AND RESULTS 
 

Biaxial fatigue data from six different steel alloys were collected from the literature [8-
13] to assess whether the new definition for the shear stress amplitude can improve the 

performance of the MWCM model in estimating fatigue strength under a high number 
of cycles. These data are reported in Table 1 and correspond to experiments under in 

phase and out-of-phase sinusoidal combined loadings on hard metals  33.1
1

1 ≤≤
−

−

t
f  , as 

defined by Papadopoulos [6]. The following nomenclature was adopted in this table: the 

subscript a stands for the amplitude of stresses. As usual, σ and τ are normal and shear 

stresses while xyβ  is the phase difference and xyλ  is the frequency ratio between σ  and 

τ . The stress values reported in each table correspond to the maximum combination of 

stresses that the specimen can stand without failing (up to a limit of 2x10
6
 cycles). 

Fatigue strength under fully reversed bending 
1

f−  and torsion 
1

t−  to this limit life are 

also provided within Table 1 for each material.  

The calculation of the shear stress amplitude was conducted by the MCC and by the 
MCR methods and then the error index could be evaluated. Figure 4 shows a bar 

diagram of  (%)i  for each test condition. It is worth of notice that for all tests under 

proportional loading (tests 1, 5 and 7) (%)i  was rigorously the same independently of 

the method used to calculate ( ),c c

aτ φ θ . For all asynchronous and for a number of 

synchronous non-proportional data computation of (%)i  by the MCR method provided 

significantly better multiaxial fatigue estimates than the classical MCC. For instance, 

application of the MWCM to the GGG60 Steel tested under different frequencies of 
loading provided (%) 28.4i = and (%) 26i = (tests 12 and 13, respectivelly) when 

( ),c c

a
τ φ θ was computed by the MCC while the use of the MCR to these same data 

improved the estimates provided by the MWCM to (%) 0.5i = −  and (%) 0.9i = − . The 

search for the critical plane in all cases was conducted considering plane 
increments 1φ θ∆ = ∆ = ° . In the the algorithm to determine the MCC it was established 

a coefficient of expansion 0.05χ =  and a convergence factor 61 10tol −= × [5]. In the 
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MCR method, the rectangle was rotated in steps 1ϕ∆ = ° . Under such conditions the 

MCR consumed only 13% of the computational time spent by the MCC. 

 

 

Table 1. Experimental data and fatigue strength properties (for different steels tested 

under combined loadings). 

 
Test # σxa σxya λxy βxy 

Material: Hard Steel; f-1:319.9 MPa; t-1:196.2 MPa; [10] 

1 138.1 167.1 1 0 

2 140.4 169.9 1 30 

3 145.7 176.3 1 60 

4 150.2 181.7 1 90 

5 245.3 122.6 1 0 

6 249.7 124.8 1 30 

7 252.4 126.2 1 60 

8 258.0 129.0 1 90 

9 299.1 62.8 1 0 

10 304.5 63.9 1 90 

Material: 34Cr4 Steel ;  f-1:415.0 MPa;  t-1:259.0 MPa; Rfr [11] 

11 263 132 4 0 

Material: GGG60 Steel;  f-1:275.0 MPa;  t-1:249.0 MPa; Rfr [8] 

12 186 93 0.25 0 

13 185 93 4 0 

Material: 30NCD16 Steel;  f-1:585.0 MPa;  t-1:405.0 MPa; Rfr [9] 

14 285 285 0.25 0 

15 290 290 4 0 

Material: 39NiCrMo3 Steel;  f-1:585.0 MPa;  t-1:405.0 MPa;  Rfr [9] 

16 259.5 150.0 2 0 

17 266.0 153.6 3 0 

 Material: 25CrMo4 Steel;  f-1:340.0 MPa;  t-1:228.0 MPa; Rfr [7,13] 

18 210 105 0.25 0 

19 220 110 2 0 

20 242 121 2 90 

21 196 98 8 0 

 

CONCLUSIONS 

 

A new method to compute aτ in a material plane of a multiaxial cyclic stress state was 

proposed. Such method proved to be very simple to implement as it does not require 

elaborate algorithms but only simple axes rotation operations. Further, comparisons 

with available experimental data under a wide range of loading conditions for a number 

of different steels showed that fatigue estimates provided by the multiaxial MWCM 

were significantly more accurate when aτ  was computed by the MCR rather than by the 

MCC. The MCR was also computationally more effecient than the MCC in the 
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conditions established in this work. In this setting, the MCR approach to compute 

aτ consists in a robust, efficient but simple to use tool to engineers concerned with the 

design of components in the high cycle multiaxial fatigue regime. It was also shown  

that the classical definition of the critical as the one where aτ  reaches its maximum 

value is an ill posed problem. Therefore, using a small tolerance, the critical plane was 

defined within a range of planes of high aτ as the one where  
,maxn

σ  is the largest. 
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Figure 4. Error index provided by the MWCM for each test condition considering the 

MCC and MCR approaches.  
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