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ABSTRACT.  In most fatigue applications, the nominal structural behavior is dominated 
by elastic deformation, but the fatigue lifetime is significantly influenced by plasticity 
around stress concentrations and flaws.  Although the elastic-plastic behavior can be 
modeled with finite element analysis (FEA), the computational expense may be 
prohibitive, especially for variable amplitude loading with multiaxial stress states.  To 
overcome this complexity, a local elastic-plastic estimate is explored that utilizes the 
purely elastic solution.   The method is conceptually similar to previous work, but is 
adapted to be consistent for variable amplitude multiaxial cyclic loading histories.  This 
approach combines a magnitude criterion (i.e. Neuber [1] or ESED [2]), the Masing 
character of the pseudo-material method [9-10], and has the generality to adopt any 
appropriate multiaxial plasticity model.  The assumptions of the current approximation 
are developed in a general manner, with the potential to adjust the constraint (i.e. 
direction alignment), magnitude, and the plasticity character as necessary. 

INTRODUCTION 
Many fatigue applications would benefit from improved estimates in the 

mechanical response, particularly for short-moderate lifetimes where plastic deformation 
dominates the material damage.  In recent years, the finite element method has been 
utilized successfully in a wide variety of circumstances, including cyclic fatigue 
application.  However, cyclic deformation using FEM remains costly, particularly for 
non-proportional multiaxial cyclic loading histories.  In an attempt to address this 
prohibitive cost, an elastic-plastic approximation based on the local elastic (i.e. FEM) is 
one practical solution to obtain sufficient predictive capabilities. 

Much of the previous work to obtain an elastic-plastic estimate is based on stress 
concentration factors around notches.  The most common of these estimates was 
developed by Neuber [1] in 1961, when he related the stress and strain concentration 
factors to the elastic behavior.  Another popular approach was introduced by Molski and 
Glinka [2], which equates the strain energy density between the purely elastic and elastic-
plastic approximation (ESED).  Both of these methods have been the involved in several 
other investigations [3-8], but their extension to non-proportional multiaxial loading is 
fairly limited.  For instance, applying the ESED method to multiaxial loading [4] can 
result in a multiple solutions.  Consequentially, a procedure to determine the correct (or 
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most appropriate) solution must be adopted.  This ambiguity and the restriction of 
potential plasticity models limit the applications of typical ESED methods. 

A pseudo-material approach [9-10] has been more successful in achieving 
appropriate estimates for general non-proportional multiaxial loadings.  This method 
involves assuming that the notched material behaves similar to the real material (with 
modification of material parameters, or potentially the material model).  The advantage of 
the pseudo-material method is its familiar construction and straightforward application to 
non-proportional multiaxial loading.  The difficulty of these methods is choosing an 
appropriate pseudo-material model because either the notch geometry (or elastic 
solution’s mechanical behavior) is coupled to the true material response to estimate the 
local strains.  Although such an avenue would be ideal with limited notches geometries 
and sufficient experiments, its non-trivial coupling makes modifying assumptions for 
different applications non-trivial. For example, this coupling requires special 
consideration to translate the hydrostatic response, because of the elastic solution tends to 
over-estimate volume changes.  Furthermore, the pseudo-material approach is not 
necessarily compatible with the familiar relationships (such as Neuber or ESED) and the 
solution requires solving the plasticity problem twice. 

In the current investigation, a method is proposed to estimate the elastic-plastic 
behavior from a purely elastic solution by adopting a directional alignment and applying 
a magnitude condition as a modified boundary condition.  The result is a method that 
maintains the multiaxial advantages of the pseudo-material approach, but uncouples the 
geometrical and local material behavior to simplify the assumptions involved in 
approximating the elastic-plastic deformation. 

MATERIAL MODELING  
In the classic notch-problem, determining the stress concentration factor (i.e., 

from elastic solutions, experimental techniques, or the FEM) is often the first step to 
estimate the local elastic-plastic behavior.  Due to the overwhelming popularity of the 
finite element method, it is advantageous to utilize the local purely elastic solution (rather 
than the nominal loading) to further generalize the elastic-plastic estimate.  Although 
utilizing the local elastic solution greatly simplifies the notch problem, several 
assumptions are still required to acquire meaningful elastic-plastic approximations.  For 
instance, consider a general local solid mechanics problem with 12 unknowns (6 stresses 
and 6 strains) at a single material point.  The elastic-plastic estimate is obtained by 
approximating these unknowns through an appropriate material model (6 relationships) 
and the purely elastic solution (6 components).  In this investigation, the material’s 
constitutive behavior and geometry are considered independently to construct an 
approximation technique that is appropriate to multi-axial fatigue loading.  

Since cyclic deformation is of primary interest, the total strain increment, Δε, is 
additively constructed from the elastic, Δεe, and plastic, Δεp, strain increments, which is 
appropriate for small strain deformation (i.e. ||ε ||<<1) 
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An incremental format was adopted because only rate independent deformation is 
considered in the current investigation.  The elastic strain increment is related to the 
stress increment by isotropic linear elasticity (Hooke’s Law [11]): 
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where I is the 2nd order identity tensor and the trace, tr(x), is defined as: 
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This elasticity format was chosen because it decouples the deviatoric, Δσ’, and 
hydrostatic, tr(Δσ), stress contributions with the shear, µ, and bulk, κ, moduli, 
respectively, which is advantageous when considering volume conserving plastic 
deformation.  The plastic strain increment is characterized by a plastic strain magnitude, 
dλ, and a plastic strain direction, N: 

  

! 

d"
p

= d#N. (4) 

The plastic strain direction is chosen to satisfy the normality condition of the yield locus: 
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where the initial shear yield strength, kM, scales the difference in the deviatoric and 
backstress (α (i)) terms.  The backstress is additively constructed from a multilayer model 
suggested by Jiang et. al. [12].  The backstress evolution may be expressed in the 
following format: 
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where r 

(i) represents the hardening,  c 

(i) represents an inverse of critical strain, and χ 
(i)  

defines the ratcheting characteristics. 
To provide some information on the local stress behavior, the current 

investigation assumes that the increment in stress is aligned for the elastic and elastic-
plastic solutions.  Concisely, this condition is written below: 
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where ΔEσ  is the increment of stress for the elastic solution, Δσ  is the increment in stress 
for the elastic-plastic solution, and ||x|| refers to the 2nd norm of tensor, x, which is 
defined below for a symmetric 2nd order tensor: 
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This alignment specifies 5 degrees of freedom and is clearly consistent for purely elastic 
loading, where the two stress definitions should behave identically.  Aligning stress 
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direction ensures smoothness in the approximated stress field (for a continuous 
magnitude estimate), which would maintain equilibrium from the purely elastic solution 
along with any ‘stress-free’ boundary conditions.  This stress alignment is consistent with 
assuming that the stress concentration factors remain proportional during the elastic-
plastic estimate, which is often assumed for engineering applications.  This assumption is 
ideal for fatigue applications, where the critical area is on (or very near) a free surface, 
which is considered a relatively low constraint.  In contrast, components under high 
constrain (such as those adjacent to relatively rigid material) would benefit from aligning 
the strain increment, but such scenarios were not considered in this investigation.  
Furthermore, for general multi-axial loading, both alignments might be overly restrictive 
(i.e. when stress relaxation results from adjacent plastic strain), but at moderate loads 
where rate independent plasticity is appropriate, stress redistribution is expected to be 
negligible. 
 With the material constitutive model and the elastic to elastic-plastic stress 
alignment specified, specifying the magnitude of stress would fully characterize the 
mechanical behavior.  More generally, this stress magnitude may be interpreted as a 
scalar relationship between the purely elastic and elastic-plastic solutions.  Fortunately 
even the earliest works in the notch-problem literature (i.e., Neuber [1] or ESED [2]) 
provide valuable insight toward constructing this relationship.  First consider the 
equivalent strain energy density (ESED) condition [2-3], which equates the strain energy 
in the local elastic solution to the local elastic-plastic solution: 
  

! 

UE =Ue +Up  (9) 

where the purely elastic strain energy, UE, is decomposed into local elastic (Ue) and 
plastic (Up) contributions.  Each term is defined by an integral as presented below: 
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Although the above integrals are well defined for multi-axial cyclic deformation, 
adjustment is necessary to achieve Masing behavior [13], which is evident in many notch 
experiments.  Specifying Masing behavior is analogous to utilizing a nominal ‘pseudo-
material’ to estimate the local elastic-plastic response [9-10].  To clarify this Masing 
behavior, it is convenient to decompose the elastic strain energy density (
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where each contribution is easily defined for monotonic loading as: 
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A comparison between the desired Masing behavior and the monotonic solution (Eq. 12) 
is illustrated for purely deviatoric (i.e., torsion) fully reversed (R = -1) behavior in Figure 
1a.  As illustrated, 
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U
e
'

 
is identical at the endpoints, but varies significantly at 
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intermediate elastic stresses.  More specifically, the Masing behavior follows a curve 
analogous to stress-strain behavior, while the monotonic curve exhibits unique mirrored 
behavior.   
 By recognizing the similarity in character to the Masing behavior and the stress-
strain response, it is evident that one may adopt a model similar to the plasticity model 
(Eq. 6) to relate the 

! 

U
e  to the stress.  To complete this analogy, consider the monotonic 

! 

U
e
'  rewritten to describe the magnitude of deviatoric stress: 
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The form of this expression is identical to the common power-law relationship between 
stress and plastic strain, where the 

! 

U
e
'  is replaced with the plastic strain: 
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Consequentially, the Masing behavior may be achieved for the 

! 

U
e
'  by applying a 

plasticity model with appropriately modified constants.  Although this analogy is 
appropriate, it is more effective to modify the plasticity model to specify the 

! 

U
e
'  from a 

given stress increment.  In other words, it is convenient to construct a cyclic pseudo-
plasticity model (with kinematic hardening) by a controlled stress increment (rather than 
plastic strain, or in this case 

! 

U
e
' ).  To construct such a model, suppose that a stress-

energy curve may be described by a series of linear segments, as illustrated in Figure 1.  
By considering the segments independently (unlike many Armstrong-Frederick type 
models, which utilize a series of additive segments that are always active prior to 
saturation [12]), each segment may be uniquely defined in either stress or 
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space.  To 

take advantage of the known stress-direction stipulated in the current elastic-plastic 
approximation (Eq. 7), an energy state variable, 

! 

q
(i), is defined with respect to a stress 

increment. 

 
Figure 1: Deviatoric stress magnitude versus (a) cumulative strain energy density 
for the Masing and monotonic models for fully-reversed cyclic loading and (b) the 

elastic strain energy density, illustrating the linearly segmented material model 
To construct the multi-axial cyclic behavior of a segmented stress-ESED curve 

(that does not soften or saturate in M terms), each segment is represented by two 
parameters: the inverse of the increment in deviatoric stress (

! 

c
(i)) and the increment in 
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r
(i)), both are labeled in Figure 1.  Each segment is only activated after the previous 

segment has achieved saturation (

! 

q
( i"1)

= r
(i"1)).  A ‘yield’ stress criterion is not 

necessary, since 

! 

U
e
'  would accumulate even at zero stress.  Lastly, a rule to prevent 

saturation was adopted that represents a nearly infinite slope that continues to accumulate 

! 

U
e
'  without a (inappropriate) saturation criterion.  The evolution of each segmented 

pseudo-plastic strain was defined similarly to the Jiang et. al. model [12] with an infinite 
ratcheting exponent.  Mathematically, this model may be concisely expressed below 
separating the two basic conditions: 
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Saturation: 
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where the corresponding deviatoric elastic strain energy density is defined as the sum of 
these state variables projected along the direction of  deviatoric stress increment: 
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This projection is appropriate since the strain and stress increments are aligned for the 
elastic deformation (as shown in Eq. 2).  It should be noted that this model is not 
appropriate for plastic deformation, because it bounds plastic strain (instead of back-
stress), causing non-physical behavior during multi-axial loading. 
 The hydrostatic contribution of the ESED should also exhibit Masing behavior.  
In this case, a 1-D equivalent of the deviatoric model may be forwarded: 
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Saturation: 
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where the constants (

! 

c
(i) and 

! 

r
(i)) are again determined from an expression analogous to 

Eq. 15: 
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and the energy is simply the sum of the state variables: 

  

! 

Ue

kk
= q

( i)

i=1

M

"
.
 (22) 

With Masing behavior adopted to describe the elastic energy (purely elastic and local), 
fair agreement with experiments is expected.  The local plastic strain energy was 
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determined using the usual definition (the last integral in Eq. 10).  This definition is 
appropriate since the plastic behavior already exhibits Masing behavior in the stress-
plastic strain response and consequentially the strain energy density when hardening is 
neglected.  Furthermore, an expression analogous to Eq. 14 is not obtainable for the local 
plastic strain energy density, making using the usual definition a necessity. 

Next consider Neuber’s [1] condition, which is commonly written as: 
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This definition also requires significant clarification for applications of multi-axial or 
cyclic loading criteria (i.e. Masing behavior).  In this investigation, it was recognized that 
the expression in Eq. 23 may be equivalently written by slightly modifying the general 
ESED expression (Eq. 9).  In short, Neuber’s condition may be written as: 
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which follows by assuming the classic power-law hardening (Eq. 15) and applying the 
expressions for monotonic loading (Eqs. 12, 13).  In this expression the plastic energy’s 
contribution is decreased (for engineering materials), requiring additional plasticity to 
achieve the same elastic solution as for the ESED condition.  This is consistent with 
common rule of thumb: the ESED condition predicts lower stresses (i.e. energy) than 
Neuber’s condition, which has been inferred by several authors [7-8].  Furthermore, 
adopting Eq. 24 allows other cases (besides Neuber and ESED) to be applied without the 
development of additional Masing models. 

RESULTS AND DISCUSSION 
The estimation method outlined in the previous section was adopted to predict the 

deformation behavior of several experiments first conducted by Barkey et. al. [9].  These 
experiments utilized strain gages at the notch-tip of specimens subjected to nominal axial 
and torsional multiaxial loading histories.  To obtain the local elastic solution based on 
the nominal loading of these experiments, without a finite element model, one may utilize 
the concept of stress concentration.  For plane stress bi-axial (tension-torsion) loading, 
the local elastic stress, Eσ , may be related to the nominal stress, ξ , by the following 
relationships: 
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where the stress concentration factors Kz, Kzθ , and Kz’ characterize the notch behavior in 
the axial, torsion, and transverse directions respectively.  The stress concentration factors 
specified are appropriate for the geometry utilized by Barkey et. al. [9].  The constitutive 
material behavior was assumed to be isotropic, where the elastic and plastic constants are 
consistent with the parameters reported in the literature [9].  A summary of these 
parameters is provided in Table 1, including the Masing elastic strain energy density 
models, and the Jiang [6] plasticity model. 
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Table 1: Material parameters for SED and Plasticity models 
 Hydrostatic SED Deviatoric SED Plasticity ( χ (i) = ∞) 
 κ = 175000 (MPa) µ = 80800 (MPa) kM = 139 (MPa) 
i r (i) (MPa) c (i) (MPa-1) r (i) (MPa) c (i) (MPa-1) r (i) (MPa) c (i) (-/-) 

       

1 0.020 0.0040 0.191 0.0040 11.8 5200 
2 0.050 0.0046 0.480 0.0046 27.0 2930 
3 0.079 0.0046 0.769 0.0046 34.2 1510 
4 0.109 0.0046 1.060 0.0046 41.6 745 
5 0.138 0.0046 1.350 0.0046 49.6 357 
6 0.168 0.0046 1.640 0.0046 58.3 169 
7 0.198 0.0046 1.930 0.0046 68.2 79.5 
8 0.227 0.0046 2.210 0.0046 79.5 37.2 
9 0.257 0.0046 2.500 0.0046 92.6 17.4 

10 0.287 0.0046 2.790 0.0046 222 8.2 

 To establish the quality of the estimation method presented in this investigation, 
both an incremental-step and a ‘Box’ loading path were employed to compare with the 
experimental results.  The scale of each path was chosen to require moderate plastic 
deformation in the local ‘notch-tip’ region of the specimen.  First consider the 
incremental-step path, illustrated in Figure 2a-b.  This loading is constructed from a 
series of cycles with increasing then decreasing magnitude.  This history consists of only 
axial nominal stress, where the other nominal stresses are zero.  The nominal axial stress 
vs. local axial strain is presented in Figure 2a, for the experiment, ESED, and Neuber 
elastic-plastic approximations.  As expected, the Neuber condition predicts higher 
stresses than the ESED method.  Both models provide a reasonable estimate of the 
experimental results, with the Neuber case providing slightly better agreement.  The local 
stress-strain response is presented in Figure 2b, illustrating that the nominal stress and 
local stress are on the same order of magnitude.  Much higher stresses result from the 
purely elastic solution, involving the stress concentration factors (Eq. 25).  It should be 
emphasized that this results is not possible without adopted the Masing material behavior 
to the ESED (i.e., Eqs. 16-17).  If Masing is not adopted, similar local response is 
achieved, but the nominal stress - local strain behavior (Figure 2a) is not reproduced.  
Instead a non-Masing energy assumption (i.e., Eq. 12) results in a very different response 
(i.e., a tilted S-shaped curve) for both the ESED and Neuber assumptions. 

 
Figure 2:  Incremental step test for (a) the nominal stress versus local strain and (b) 

the local stress versus strain for the experiment [9], ESED and Neuber models 
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 A ‘Box’ loading path is presented in Figure 3a-b.  In this case, the nominal stress 
response is presented in Figure 3b, where the x-axis is the axial stress (σzz) and the y-axis 
is the non-zero torsional stress (τzθ).  The local strain response is presented in Figure 3a 
for the experiment, ESED, and Neuber elastic-plastic approximations.  As before, both 
methods provide adequate agreement between the experiment and approximate models.  
The strain direction deviates from a square box path at the onset of local plasticity for 
both the experiment and models.  Furthermore, the fair agreement in shape suggests that 
the alignment in directions (Eq. 7) is appropriate, because modifying the direction of 
loading significantly alters the shape of the local strain response.  Lastly, the local stress 
response is presented in Figure 3b, illustrating the difference in stress magnitude for the 
ESED and Neuber assumptions.  As for the incremental step simulation (Figure 2), the 
nominal and local stresses are on the same order and have similar character.  It should be 
noted that the purely elastic solution predicts stresses with much higher magnitude, due to 
the stress concentration factors (Eq. 25). 

 
Figure 3:  Multiaxial ‘Box’ loading path illustrating (a) shear strain versus axial 

strain and (b) the shear stress versus axial stress for the experiment [9], ESED and 
Neuber models 

CONCLUSIONS 
 The current method to estimate the elastic-plastic response from a purely elastic 
history decouples the notch geometry and local material response by utilizing a modified 
boundary condition approach.  Specifically, the method combines a magnitude criterion 
with directional alignment to impose boundary conditions for an appropriate multiaxial 
plasticity model.  The assumptions of the current construct are developed in a general 
manner, with the potential to adjust the constraint (direction alignment, i.e. stress), 
magnitude (i.e. ESED or Neuber), and the plasticity character.  A few additional 
conclusions may be drawn: 

• Because of the representation the elastic strain energy density, the current method 
exhibits Masing behavior between the nominal stress and local strain consistently 
with the experimental evidence. 

• Multiaxial experimental results were adequately reproduced based on the 
material’s notch-free mechanical behavior (a stress-strain curve), geometrically 
determined stress concentration factors, and a choice of magnitude criteria (ESED 
or Neuber). 
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• With appropriate modeling choices, the current approach should be consistent 
with any arbitrary multiaxial cyclic loading.  Subsequently, the elastic-plastic 
response may be employed to improve fatigue life or damage estimates associated 
with the local mechanical response. 
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