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ABSTRACT. A three-dimensional model for the analysis of RC members, with 

particular reference to the cracked stage, is proposed in terms of secant stiffness matrix. 

This formulation has been obtained by taking into account the flexibility contributions 

of cracks and of the concrete between adjacent cracks both in the singly and in the 

multi-cracked stages. The model includes all the interface phenomena generated along 

cracks, such as aggregate bridging and interlock, tension stiffening and dowel action. 

Finally, the model has been implemented into a Finite Element code and it has been 

validated through the comparison with significant experimental data. 

 

 

INTRODUCTION 

 

The post-cracking behavior of reinforced concrete (RC) members is characterized by 

several complex aspects, such as the formation and reorientation of one or more cracks 

(Fig.1a), the interface actions at crack surfaces, the interaction effects between concrete 

and reinforcing bars, the non-linear compressive stress-strain relation for concrete and 

the markedly anisotropic behavior due to the arrangement of reinforcement (Fig. 1b).  

In this study, a three-dimensional numerical model for the analysis of cracked RC 

elements subjected to a multiaxial state of stress is proposed. The model, named 3D-

PARC [1], represents an extension of the previous 2D-PARC [2,3] and has been 

formulated in terms of secant stiffness matrix to allow the implementation into a FE 

procedure. In the uncracked stage, concrete behavior is described through a non-linear 

elastic model, the elastic moduli are evaluated through equivalent nonlinear uniaxial 

relationships and the maximum stresses are limited by an appropriate strength domain 

[1,4]. Singly and multi-cracked stages are simulated by adding crack contributions to 

the flexibility of the uncracked material, whose properties are properly degraded. These 

contributions are evaluated through a local analysis of the reinforced concrete element, 

on the basis of a strain decomposition procedure. The model assumes fixed, multi-

directional cracking and smeared reinforcement approaches, taking into account the 

effects of a multiaxial stress state and several post-cracking phenomena, such as tension 

stiffening, dowel action and aggregate interlock. It has been implemented into a FE 

code and validated through the comparison with significant experimental data. 
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(a)     

 

(b)     

 

Figure 1. (a) Crack pattern in a RC beam subjected to torsion in correspondence of 

failure load; (b) typical reinforcement arrangement and crack orientation at failure [5]. 

 

 

CRACKED STAGE: INTERFACE PHENOMENA, STEEL BAR-CONCRETE 

INTERACTION, CONSTITUTIVE RELATIONSHIPS 

 

The proposed model is structured in a modular framework. All the mechanical 

phenomena are individually analyzed on the basis of their properties and physical 

conditions, and the stiffness matrix is computed separately for each resistant 

contribution by using suitable constitutive models and techniques. 
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Figure 2. (a) Aggregate bridging and (b) interlock actions in the nk - tk plane; (c) steel 

contributions in the crack and (d) equivalent smeared stresses in the xi-yi plane; (e) 

failure surface and cone defining the failure modes. 
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Figure 3. Equilibrium conditions of (a) RC element, (b) steel bar and (c) concrete; (d) 

CEB Model Code 90 bond-slip law; (e) finite difference discretization and final steel 

strain distribution. 

753



 

 

Aggregate Bridging and Interlock Contributions 

Aggregate bridging, which generates normal stresses transferred between crack surfaces 

(Fig.2a), is modeled by a smooth curve as a function of the k
th 

crack opening uk [1,6]:  
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where cbk is the bridging coefficient, u0 is the crack opening corresponding to ζbk=0.5 ft, 

p is a coefficient which takes into account the properties of aggregates crossing the 

crack (in this work, p = 1 has been assumed) and amk is the crack spacing. 

Aggregate interlock, which generates normal and shear stresses due to slip between 

crack surfaces (Fig.2b), is modeled by [7]: 
 

    kvkak

kuvkak

c

c








                                                       (2) 

 

The two coefficients are defined as functions of the crack opening and the crack slip: 
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where:  *

4

*

321

* 41 44.2 ,45.2, 62.0 , 25.0 , 27.0   aaaaqfc  and Dmax is 

the maximum aggregate size. 

Finally, the concrete stiffness matrix in the crack coordinate system nk-tk is obtained: 
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Dowel Action and Tension Stiffening Contributions 

Steel bars which cross the k
th

 crack exhibit axial and transversal stiffness, the latter due 

to the dowel action contribution (Fig.2c). The axial and dowel actions are modeled in 

the local steel coordinate system xi – yi (Figs. 2c,4b) and then smeared on the crack 

surface, so obtaining equivalent stresses (Fig.2d). The axial and transversal 

displacements δik and ηik, along xi and yi , respectively, are evaluated as a function of the 

crack displacements uk and vk. 

The dowel action contribution Sik, modeled according to [8] and smeared, yields: 
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where lsi is the bar length between two cracks. 

The stiffening contribution to the steel bar provided by the concrete between two 

cracks produces a not uniform strain distribution along the reinforcing bar. The 
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equations governing the problem are the equilibrium relationships for section, for steel 

bar and for concrete (Figs. 3a,b,c) and the compatibility equation: 
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dx
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                                                       (6) 

 

where s = us-uc is the slip and us and uc are the steel and concrete displacement along the 

bar respectively. Combining the previous relations, the solving differential equation is 

obtained: 
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The bond-slip law of the CEB Model Code 90 [9] is adopted (Fig. 3d). The problem 

is numerically solved (Fig. 3e) using the FDM (finite difference method) with the 

boundary conditions s(0) = 0 and s(ls/2) = δ/2. After the evaluation of s, the concrete 

stresses can be evaluated through the concrete equilibrium equation (Fig. 3c), starting 

from the known value of the concrete stress in the crack. The concrete strain is then 

calculated on the basis of the tensile field of the concrete constitutive law and the steel 

strain along the bar is obtained from Eq. 6 by imposing the symmetry in x = 0 and x = 

ls/2. Finally, this value is corrected in order to assure the equivalence between the mean 

steel strain obtained from the tension stiffening formulation and the global mean steel 

strain in the bar direction. The tension stiffening coefficient is evaluated as 

 siiksicrk l  gik  , where εsicrk is the steel strain at the crack. 

The steel stiffness matrix for the i
th

 bar crossing the k
th

 crack can be written in the 

local x i- yi coordinate system, where sicrkE is the steel secant elastic modulus at the crack 

corresponding to εsicrk and ik is steel ratio, as: 
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Concrete Modeling 

Uncracked concrete and concrete between cracks (in this case the mechanical 

parameters are properly degraded by introducing a damage coefficient) are modeled as 

an incrementally linear material, orthotropic with respect to the principal strain 

directions 1-2-3, and associated to a strength domain based on a failure surface closed 

by a cap surface [1, 10], capturing the concrete failure near the hydrostatic axis (Fig.2e), 

through the following material stiffness matrix: 
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being Eci and νi the secant elastic modulus and the Poisson coefficient relative to the i
th

 

direction, respectively.  
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Figure 4. (a) Solid unitary RC element and (b) local steel coordinate system; (c) singly 

cracked RC element, (d) first cracking condition, (e) crack local coordinate system and 

displacement definition, (f) doubly cracked RC element. 

 

 

STIFFNESS MATRIX FOR THE 3D REINFORCED CRACKED ELEMENT 

 

The theoretical formulation refers to a unitary solid element reinforced with steel bars 

arranged in layers (Fig.4a,b), characterized by their xi-axis (defined through the angles 

θ1i and θ2i), having cross-sectional area Asi, diameter i and geometric steel ratio ρsi. 

When the principal tensile strain exceeds the tensile strain limit, cracks form 

perpendicularly to the 1-axis, which represents the current direction of the maximum 

tensile strain (Fig.4c,d), being 1-2-3 axes the current principal strain directions. This 

direction, named n1, characterizes the orientation of primary cracks, while am1 is the 
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crack spacing. In the crack plane, the t1 axis represents the direction of the current slip 

between crack surfaces (Fig. 4e).  

After cracking, the total strain can be divided in two contributions: 
 

     1crc                                                  (12) 
 

where {c} is the reinforced concrete strain between two cracks and {cr1} is the 

resultant primary crack strain. The latter is the transformation into the global coordinate 

system x-y-z of the crack strain defined in the local coordinate system n1-t1 as: 
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being u1 the crack opening and v1 the crack slip (Fig. 4e). 

The equilibrium in the crack in the x-y-z coordinate system can be written as: 
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where {cr1} is the stress in the crack, {c,cr1} and {s,cr1} are the stresses in the crack 

due to concrete (aggregate bridging and interlock) and to steel (tension stiffening and 

dowel action) contributions respectively, [Dcr1] is the crack stiffness matrix, [Dc,cr1] and 

[Ds,cr1] are the stiffness matrices due to concrete and steel contributions in the crack. 

The equilibrium of the RC between two cracks can be written as: 
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where [Dc] and [Ds] are the stiffness matrices of concrete (whose terms are adequately 

softened by a degradation coefficient, taking into account the damage due to cracking) 

and steel between the cracks, respectively. The assumption {s}={} is allowed since 

the average strain of steel between two adjacent cracks, {s}, assumes values that are 

little lower with respect to the average strain {} of the element. From Eqs. 14 and 15, 

the crack strain and the concrete strain are obtained: 
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which, substituted into the compatibility Eq. 12, yields: 
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  is the global RC stiffness matrix and [

 
I
 
] 

is the identity matrix. 

When in the concrete between two adjacent cracks the maximum principal tensile 

strain, along the 1-axis assumed as current direction, exceeds the tensile strain limit, 
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secondary cracks arise (Fig. 4f), perpendicularly to the 1-axis. This direction (called n2) 

characterizes the orientation of secondary cracks and will be kept fixed. Following this 

approach, the formulation can be generalized to the case of Ncr cracks, obtaining:  
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where [Dcrk] is the stiffness matrix of the k
th

 crack.  

 

 

NUMERICAL IMPLEMENTATION AND MODEL VALIDATION 

 

The 3D-PARC stiffness matrix has been implemented into the FE code ABAQUS 

through an external subroutine called UMAT (User MATerial). The variables passed in 

are the material properties and the current stress and strain fields in the structure.  

The reliability and the capability of the proposed 3D-PARC model has been verified 

through the analysis of the global and local behaviour of reinforced concrete elements 

showing a marked 3D response. To this aim, an hollow square section beam subjected 

to pure torsion, named T1 [5], has been analyzed through the proposed procedure. 
 

 
Figure 5. (a) Geometric characteristics and reinforcement arrangement, (b) FE mesh. 
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Figure 6. Comparisons between numerical and experimental results: applied torque 

versus (a) twist; (b) stress in longitudinal bars and in stirrups. 
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Figure 7. Comparisons between numerical and experimental results: (a) crack 

opening; (b) concrete compressive strain. 

 

Careful and detailed comparisons between the well-documented experimental results 

and the numerical ones have been carried out. 20-node quadratic solid elements with 

reduced integration, called C3D20R, have been used and the adopted FE mesh, 

consisting of 216 elements and 1572 nodes, is shown in Fig. 5b. Some comparisons 

between experimental observations and numerical predictions are reported in Figs. 6, 7. 

 

 

CONCLUSIONS 

 

The comparisons reported in Figs. 6, 7 prove that the proposed procedure is able to 

accurately describe the fundamental aspects governing the mechanical behavior of the 

examined structure. In fact, numerical results, as well as experimental observations 

(Figs.6a,b, 7a,b), show that the beam T1 is characterized by the almost simultaneous 

yielding of the longitudinal and transversal steel. After the crack formation, the load is 

equally transferred to the longitudinal and transversal steel, so determining a sudden 

increment of twist, while concrete struts and cracks show a 45 deg orientation with 

respect to the beam axis, without subsequent reorientation as loading increases.  
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