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ABSTRACT. The purpose of this paper is to present a method to predict the growth 
rate of short cracks using a non-propagation criterion proposed by Thieulot-Laure et 
al. [1] and modified by de Moura Pinho et al. [2] and material data such as the Paris’ 
law and the fatigue threshold for long cracks. The criterion is based on linear elastic 
fracture mechanics including non-singular terms of the asymptotic developments i.e. the 
T-stresses. This criterion allows predicting the non-propagation fatigue threshold for 
short and long cracks. In this approach it is used to predict the crack growth rate of 
short and long cracks in the near threshold regime. 
 
 
INTRODUCTION 
 
Predicting the residual fatigue life of structures that may contain flaws is a major 
concern in various industrial sectors in which safety is a key issue, such as the aircraft 
industry for instance. Impact marks or scratches on the surfaces of critical components, 
for instance, may evolve, when submitted to fatigue loadings, into short fatigue cracks 
and lead to the failure of the component. The prediction of the growth rate of short 
crack has long been a concern since the anomalous behaviour of short cracks was 
exhibited [6, 9]. The criterion developed by Thieulot-Laure et al. [1] and modified by de 
Moura Pinho et al. [2] allows predicting the fatigue threshold of short cracks as a 
function of the crack length, it reproduces, as well as, for instance, the El Haddad’s 
criterion [7], the short crack to long crack transition in the Kitagawa and Takahashi 
diagram. However, unlike other criteria [7], this criterion can be used in multiaxial 
loading conditions, including non proportional loadings.  

This criterion is based on the assumption that fatigue cracks propagate because free 
surfaces are created at the crack tip when it experiences plastic deformation. Hence, the 
criterion [1, 2] is basically a plastic yield criterion f, that derives from the von Mises 
criterion, but expressed in terms of linear elastic fracture mechanics quantites; stress 
intensity factors and T-stresses . In each time step, if the plastic yield 
criterion f is negative, crack tip plasticity and hence fatigue crack propagation can be 
neglected. As soon as the yield criterion is fulfilled, plastic yield and hence fatigue 



crack growth can occur. In other words, the effective part of the fatigue cycle is that for 
which f is not negative. In this paper, the criterion was used to determine the threshold 
for fatigue crack growth in mode I conditions ( . It is then used to predict the 
fatigue crack growth rate for short or long cracks using the Paris’ law of the material [4, 
5]. 
 
CRITERION 
 
Hypotheses 
Emmanuelle Thieulot Laure [1] and Raùl de Moura Pinho [2] introduced a generalized 
von Mises yield criterion for the crack tip region. In this criterion, fatigue cracks are 
assumed to propagate only if cyclic plasticity occurs at crack tip. Thus, it is expressed as 
a threshold for plastic yield for a region of material located within a distance δ to the 
crack tip and per unit of length of the crack front. The radius δ is a length scale 
parameter which has to be identified from experiments. Like the El Haddad’s equation 
[7], this criterion requires to know three material parameters: 

- the actual flaw size or an equivalent flaw size, ao, 
- the non-propagation threshold for long cracks, ΔKth, 
- a length scale parameter, δ. 

 
This criterion [1, 2] allows reproducing the short cracks to long cracks transition as 

in the Kitagawa and Takahashi’s diagram [6]. Moreover, once identified in mode I, it 
allows accounting very naturally for stress multiaxiality effects [3] by considering as 
many stress intensity factors ( and T-stresses  as required for a 
given problem. Let consider, for instance, an infinite media subjected to a uniform 
diagonal stress tensor . 

 

 

(1)  

Let now consider that, a 2D crack with a length , lying in the plane normal to y 
and with its straight fronts directed by z is inserted in this infinite media. If we consider 
linear elastic conditions, the solution of the problem can be obtained by superposition 
(cf. Figure 1).  

First, the problem can be solved analytically for equibiaxial and plane strain 
conditions (  and . It would yield the Westergaard’s solution and 

.  
Then, the T-stress  can be superimposed to this first solution, to 

correct it considering now a biaxial and plane strain loading case.  
Finally, Tz-stress is added to correct the solution from the fact that the media is not 

necessarily loaded in plane strain conditions and its value is . 
 



 
Figure 1. Illustration of the significance of T and Tz stresses 

 
If the stress tensor S was not diagonal, a mode II stress intensity factor would yield 

from Sxy, a mode III stress intensity factor from Szy and Γ  the third T-stress would stem 
from Sxz. The number of required fracture mechanics quantities being equal to the 
number of independent degrees of freedom of the stress tensor in the uncracked 
component. When 3D cracks in 3D components are considered, the T-stresses can be 
determined from FE calculations, or can be found in the literature for simple cracks and 
specimens geometries.  

Considering not only the stress intensity factors but also the T-stresses allows 
therefore accounting for all the components of the stress multiaxiality, but it also 
introduces a short crack effect. Indeed, the T-stress components are function of the 
stress field in the uncracked media (cf. Figure 1), while the stress intensity factors are 
also function of the size of the crack. In the Westergaard’s solution, the terms associated 
with the T-stresses are constant while those associated with the stress intensity factors 
vary with ( . As a result, considering the T-stresses in a fracture mechanics 
criterion will naturally induce a crack size effect in the criterion. For long cracks, the 
effect of the T-stresses is usually neglected. But, if short cracks are considered, the 
effect of the T-stresses cannot be neglected anymore. 
 
Expression of the criterion 
We apply the same approach to get the yield criterion for the crack tip region, as that 
used to express the von Mises criterion for a uniformly loaded volume of material. First, 
the distortional part of the elastic energy is determined as a function of the quantities 
used to represent the loadings. Second, a critical value of this elastic energy is 
determined as a function of an experimental data. And third, the criterion is obtained by 
assuming that the yield condition is obtained in any multiaxial loading condition for the 
same critical value of the distortional part of the elastic energy.  

To do so, the distortional part of the elastic energy within the crack tip region [1, 2, 
8] is calculated using the LEFM stress, strain and displacement fields at crack tip. Since, 
it is aimed at using this criterion for small cracks, non-singular terms (the T-stresses), 
are also considered. For instance, for a 2D generalized plane strain problem in mode I, 



the Westergaard’s asymptotic development [3] of the displacement field  including the 
T-stresses, is as follows: 

 

(2)  

where  and . 

The strain tensor  is then derived from the displacement field  and the stress field 
 is obtained by the Hooke’s law. The distortional elastic energy density  in 

each point  can be expressed as follows: 

 
 

(3)  

where  and  are the deviatoric parts of the stress and strain tensors. The distortional 
elastic energy density is then integrated over a domain within a distance δ to the crack 
tip, to get the distortional energy per unit of length of the crack front : 

 
 

(4)  

The yield criterion is obtained by assuming that the yield condition is obtained in any 
multiaxial loading condition  for the same critical value of the distortional part 
of the elastic energy   

  (5)  

The value of  can be determined from the threshold stress intensity factor 
amplitude measured for long cracks (i.e. T and Tz are neglected) so that: 

  (6)  

with  (7)  

After calculation and some simplifications, the equation (4) becomes: 



 
 

(8)  

The material parameters are the yield threshold , the distance  and the Poisson’s 
ratio ν. The length scale parameter δ  allows adjusting the short to long crack transition. 
The other coefficients are reported in Table 1. 

Table 1. Values of the coefficients in equation (8) calculated for ν=0.29. 

     

  
   

 
The same approach can be used to get the expression of f when the LEFM quantities 

are all considered, i.e. the three stress intensity factors ( and the three T-
stresses . No additional material parameter is necessary. 
 
 
SHORT CRACK GROWTH RATE PREDICTION FOR THE INCO 718 DA 
ALLOY 
 
The previous non-propagation criterion is now used to model the growth rate of small 
cracks. To illustrate the methodology the material data of the superalloy INCO 718 DA 
are considered and mode I, constant amplitude fatigue, conditions are considered.  

During each fatigue cycle, different phases may appear. During a loading step,  is 
first negative (elasticity) then becomes positive above the yield threshold (plasticity 
occurs). Then, at unloading, f is positive but df is negative.  

During cycling in constant amplitude fatigue at , the effective part of the 
loading cycle is thus defined by fmax, which corresponds to the integration of df over the 
fatigue cycle, considering only the time steps during which plasticity is promoted i.e. 
the time steps during which both f and df are positive. The Paris’ law for long cracks of 
the material is then used to determine a relation between fmax and the crack growth rate 
per cycle da/dN. This relation is then used to predict the growth rate per cycle for short 
cracks. 

Closure effect and other history effects are not considered there, to account for them, 
an internal stress state (analogous to a kinematics hardening) and its evolution rule 
should be introduced for each LEFM quantity [10]. 
 
Modification of the Paris-Erdogan’s law 
The Paris-Erdogan law [5] for the INCO 718 DA superalloy was obtained from [4] and 
yields, where da/dN is in m/cycle and ΔK in MPa.m1/2, 



 
 

(9)  

Thereafter,  is calculated assuming that the experimental results were obtained for a 
long crack ( ) and : 

 
 

(10)  

and the experimental crack growth rate per cycle  was then replotted versus  
(cf. Fig. 2). 

 
Figure 2. Evolution of  as a function of  

 
This curve can be fitted by a power law to obtain the eq. (11): 

 
 

(11)  

with  and . 

 
Figure 3. Evolution of crack growth rate  versus  

 
Identification of the parameter  
In the following, it is assumed that the short crack to long crack transition appears for a 
crack length of 300 µm in uniaxial loading conditions. This assumption is used to 



determine the parameter  of the non propagation threshold f=0 (equation 8). Indeed, 
 is adjusted to get for a=300 µm a threshold stress intensity factor  of 90% of the 

long crack threshold. To do so we condidered a through thickness crack with length 2a 
in plane strain: 

  and =0  (12)  

Where the biaxiality ratio Hence, the threshold can be obtained from 

equation (8) as follows: 

 
 

(13)  

Finally, is identified for  at  204.74 MPa and 17.6 µm is obtained from 
the expressions in Table 1.The evolution of  vs. crack length can be plotted for 
various biaxiality ratio  (cf. Fig.4). 

 
Figure 4. Evolution of the threshold stress intensity factor  versus crack lenght  

 
Short crack growth curves 
Let consider a semi-circular short crack with a radius  initiated (with a radius 

 at the surface of a component loaded by a uniaxial stress  The expressions of 
 and  are now [2]: 

 , ,  (14)  

In this case the equation (11) becomes: 

 
 

(15)  

This equation can be used to plot several da/dN – ΔK curves for differents values of 
the initial crack length using eqs. (14) and (15). The curves plotted in Fig. 5 indicate 
clearly that the model is able to reproduce the short crack effect [11]. 



 
Figure 5. Evolution of  versus  for different for a semi-circular short crack 
 
 
CONCLUSION 
 
A plasticity index  was defined to characterize the loading conditions in the crack tip 
region in multiaxial conditions. This index includes the T-stresses and can hence be 
used either for short and long cracks. The Paris’law was modified in order to determine 
the crack growth rate per cycle in constant amplitude fatigue as a function of this 
plasticity index, and this modified law reproduces well the short crack effect in fatigue.  
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