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ABSTRACT. The aim of this work is to develop a lifetime prediction model based on 
continuum damage mechanics that can unify the Low Cycle Fatigue (LCF) and High 
Cycle Fatigue (HCF) domains. The concept of an inclusion embedded in a matrix is 
used to describe the fact that plasticity is no more observable when the load is below 
the yield stress. A review of the localization rules used in the literature for damage 
modeling is done and two new ones have been proposed. A numerical implementation 
allows us to calculate the responses of the inclusions for the different localization rules. 
Some calculations are presented under cyclic loadings. 

INTRODUCTION  
Space engines are submitted to vibrations that lead to failure after a high number of 
cycles (HCF). During the starting phase of the engine, the components are submitted to 
high amplitude cycles of loading that are representative of the Low Cycle Fatigue 
domain (LCF). A good prediction of the components lifetime would then take into 
account both cases. A damage model based on the Lemaitre’s damage law [1] gives a 
good response in the case of Low Cycle Fatigue when plasticity and damage may be 
observed at the scale of the structure (macro-scale). When the structure is submitted to 
low amplitude solicitations, for instance vibrations, the material behavior remains 
elastic at the macro-scale. However failure finally occurs due to micro-plasticity and 
micro-damage that leads to the initiation of a macro-crack. A two-scale damage 
approach has been developed in LMT Cachan in order to solve the problem of lifetime 
prediction in the HCF domain [2–4]. The aim of this work is to extend the validity of a 
multiaxial HCF model to the LCF domain in order to tackle the case of complex 
loadings such as experienced by space engines components. 
 

INITIAL TWO-SCALE DAMAGE MODEL 
Continuum damage mechanics is a powerful tool to predict crack initiation in a structure 
under multiaxial and random loadings. It handles as well monotonic and cyclic 
solicitations. Based on the concept of effective stress, Lemaitre [1] developed a 
thermodynamic framework that gathers elasticity, plasticity and damage equations. The 
incremental resolution of those equations gives access to the evolution of some internal 
variables that represent the material state. However, the model introduces a damage 
evolution driven by plasticity (and enhanced by the stress triaxiality). Thus lifetime 
prediction can be done under LCF conditions but is not straight forwardly possible 
under HCF conditions (when the structure remains elastic). A two-scale approach has 



been then developed to tackle this difficulty [2–4]. Plasticity is supposed to occurs at a 
lower scale (defects in the microstructure). The micro-plastic sites are gathered into a 
virtual inclusion with a lower yield stress taken equal to the fatigue limit. An elastic 
(possibly elastoplastic) calculation is performed at the structure scale from which the 
loading at critical points is taken. The loading is then applied to a Representative 
Volume Element (meso-scale) and a scale transition, based on the Eshelby inclusion 
problem, is used to calculate plasticity and damage in the inclusion. The time 
integration of the constitutive equations (elasticity and plasticity coupled with damage) 
at this micro-scale leads then to a predicted lifetime. 

 
Figure 1: SN curve: response of the initial two-scale damage model from an elastic or 

an elastoplastic calculation at meso-scale. 

From those two models, we aim at building a unified model able to predict the lifetime 
for the whole range of loading level from the fatigue limit to the ultimate stress level 
(monotonic failure). The transition domain between LCF and HCF (loading level just 
above the elastic limit) has to be treated carefully. The Eshelby-Kröner transition law 
currently used doesn’t take enough into account the plastic evolution of the meso-scale. 
A review of the scale transition rules is presented next. A general framework is 
proposed to unify the literature rules for the spherical inclusion problem. Two proposals 
will be made to get flexibility on the behavior response of the inclusion. 

LOCALIZATION RULES UNIFIED IN A GENERAL FRAME 
In this work, the approach is based on the inclusion problem for which Eshelby gave an 
exact analytical solution under some restrictive hypothesis. The idea is to calculate the 
stress σµ and strain εµ fields to which an inclusion is submitted knowing the stress σ and 
strain ε fields applied to the matrix far from the inclusion, making the hypothesis of no 
interaction between different inclusions. The stress field in the inclusion is equal to the 
stress field seen by the matrix at infinity corrected with a mismatch stress field. The 
strain field is also corrected using a strain field called mismatch strain field. The upper 
script „F” that indicates the mismatch fields is used by reference to the „Free” strain 
introduced by Eshelby.  

                                                (1) σµ = σ − (III− SSS) : σF



                                                     (2) 
The tensor  is the fourth order identity tensor and  is a fourth order tensor introduced 
by Eshelby to describe the geometrical aspect of the inclusion. In the case of an elastic 
spheroidal inclusion, the expression of the Eshelby’s tensor depends only on the Poisson 
ratio ν:  

                                                    (3) 

 
 
The process of scale transition is next described by giving the relationship between σF 
and εF. It should be noticed that as far as the free strain depends only on the plasticity of 
the matrix and the inclusion, all the localization rules presented next impose the equality 
of the hydrostatic part of the stress field in the matrix and in the inclusion. The 
localization process will then only modify the deviatoric parts of the strain and stress 
field in the inclusion. The problem becomes multiaxial in the inclusion even if the strain 
imposed to the matrix is uniaxial.  

Voigt’s bound 
Voigt [5] made the assumption that the strain field in the inclusion was equal to the field 
in the matrix. In many analyses, this assumption is a lower bound in terms of effective 
stiffness. It can be seen as setting the Eshelby tensor  equal to zero: . 

Reuss bound 
Reuss [6] made the assumption of a stress field in the inclusion equal to the one applied 
to the matrix. In that case, one speaks about an upper bound in terms of effective 
stiffness. It is equivalent to an Eshelby tensor taken equal to the fourth order identity 
tensor: . 

Eshelby’s law and Kröner’s approach 
Eshelby [7] gave the demonstration of the solution in the case of an elastic inclusion 
embedded in an elastic matrix and submitted to a free strain. In that case the strain field 
in the inclusion is homogeneous. Kröner [8] used this result and assumed that the free 
strain is due to the difference between the plastic states of the inclusion and the matrix. 
This approach shows its limits when the plasticity of the matrix tends to be high and 
evolves much, as it is the case in the LCF domain. Using the former general framework, 
Eshelby-Kröner is obtained with the assumption of an elastic mismatch behavior (  is 
the fourth order Hook’s tensor): 

                                                   (4) 

Hill’s approach 
Hill [9] takes into account the matrix plasticity by replacing the elastic modulus  by 
the tangent modulus of the matrix (assumed symmetric): 

                                                       (5) 
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                          (6) 
With  the shear modulus,  the plastic modulus and  the normal tensor to the yield 
surface: 

                                                         (7) 

The localization process has then to be written in terms of strain and stress rate instead 
of finite quantities. To set 

                                                        (8) 
recovers Hill’s localization rule. It can be noticed that in the case of elastic unloading at 
RVE meso, one recovers an elastic behavior and doing so, the same response as 
Kröner’s rule. It is equivalent as taking the hardening modulus  as infinite. Using the 
true tangent modulus may be problematic as it is non isotropic but directed by the 
normal to the yield surface. In homogenization processes, many authors [10], [11] have 
obtained too stiff responses compared to the reality. They have then proposed 
isotropized forms instead of tensorial form. 

Berveiller and Zaoui’s approach 
Berveiller and Zaoui [12] used Hill’s approach under the Hencky-Mises condition and 
they considered a monotonic loading. They then integrated the constitutive equation 
laws written to introduce finite quantities: 

                                                  (9) 

                    
This rule applies to a monotonic loading. After a first plastification of the matrix, the 
second plasticization after an elastic unloading will show discontinuities. This approach 
cannot be used to describe properly cyclic loadings. 

Gonzalez and Llorca’s approach 
Gonzalez and Llorca [10] started from Hill’s approach and used an isotropized tangent 
modulus by projecting the localization rule on the normal to the yield surface. In the 
particular case of a radial the normal  remains constant. The projection of the 
localization rule becomes a scalar relationship: 

                                                (10) 

With  the plastic modulus at the RVE scale that can either be expressed as a function 
of the chosen hardening law parameters or more generally the rate: 

                                                         (11) 
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Gonzàlez-Llorca’s formulation is rewritten with rate quantities and will give continuous 
responses even when applied to cyclic loadings. 
 

Proposed extension 
The formulation given by Gonzalez and Llorca [10] can be extended to make the 
inclusion response more flexible (softer of stiffer) depending on the choice of the 
mismatch parameters (Ω, Ω0 and ω): 

                                        (12) 
The quantity  is still the plastic modulus calculated from the RVE plastic state. The 
sensitivity to parameters (Ω, Ω0 and ω) is studied next to show the ability to give a 
modular response. For Berveiller and Zaoui’s rule, one can also propose an integrated 
version of this rule in terms of stress and strain fields but by keeping the 
parameterization by the hardening modulus: 

                                       (13) 
For the same reasons as for Berveiller and Zaoui’s rule, this proposal cannot be used for 
cyclic loading because of discontinuities at plasticity/elasticity transition. 

NUMERICAL IMPLEMENTATION 
The different localization rules have been implemented as a procedure of DAMAGE 
LMT-Cachan post-processor. The input loading is here a uniaxial strain at RVE meso-
scale. The behavior RVE scale the macroscopic behavior of the material, with a power 
law kinematic hardening [13]. The behavior of the inclusion is taken elastoplastic linear 
kinematic hardening with a softer plastic modulus . The yield stresses are taken 
equal at both meso- and micro-scales. The plastic modulus  of the inclusion is taken 
100 times lower than  at meso-scale. One first calculates the elastoplastic response of 
the RVE. Then the elastoplastic state of the inclusion is calculated regarding to the 
different localization rules. Both monotonic and cyclic responses are presented. 

          
Figure 2. Behavior at meso- and micro-scales under monotonic and cyclic loading 

The classical localization rules have been first implemented. When plotting the stress of 
the inclusion with respect to the strain in the inclusion, one recovers of course the 

h

hµ = Cµ

Cµ

C



chosen behavior (linear kinematic hardening). The difference is then the final plastic 
state obtained for a given maximum load applied to the meso scale.  
 

  
Figure 3. Behavior of the inclusion regarding 4 classical localization rules 

 The response of the inclusion can be plotted as the equivalent stress in the inclusion 
with respect to the strain at the meso scale (applied loading).  

  
Figure 4. Response of the 4 classical localization rules when a strain loading is applied 

at the meso-scale 

The response given by the Reuss’ approach fits the meso behavior as it translates the 
equality between the stresses at the two scales. One can observe that the Kröner’s, 
Eshelby’s and Voigt’s responses under cyclic loadings are tightly the same. The three 
localization rules don’t take enough into account the plasticity of the meso scale. 
Because of this consideration, the Hill’s approach was developed and the response 
presented below is the one used by Gonzalez and Llorca under the restriction of a radial 
loading. The response of the parameterized proposal is also given in blue. Here is just 
presented the sensitivity to the power coefficient ω. 



        
Figure 5. Response of localization rules written in terms of stress and strain rates  

(in blue: sensitivity to the mismatch parameter ω) 

Localization rules can be used as integrated quantities (as Berveiller and Zaoui’s rule). 
Below is shown the sensitivity analysis to the power law coefficient ω. As expected the 
response under cyclic conditions is not continuous. 

       
Figure 6. Response of localization rules written in terms of finite quantities 

(in green: sensitivity to ω) 

CONCLUSION AND PERSPECTIVES 
Using the concept of mismatch behavior between matrix and inclusion allows unifying 
the localization rules in a same framework. In order to take into account the matrix 
yielding, Hill proposed to use the instantaneous tangent modulus instead of the elastic 
modulus in the localization rule. A numerical implementation of the corresponding 
isotropized rule but also to a modular family of localization rules has been done 
successfully. Both monotonic and cyclic loadings have been tested. The continuous 
response of the model under cyclic loading is guaranteed by the introduction of the 
plastic modulus in the so called  versus  mismatch behavior and the fact that the 
localization rule is written in terms of rates. The proposed rules allow getting either 
softer or stiffer response of the inclusion for the same mesoscopic loading. 
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