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ABSTRACT. To model the yield asymmetry of magnesium alloys under cyclic tension-

compression, the anisotropic directional dependency, and the symmetric behaviour 

under cyclic pure shear, an anisotropic hardening rule based on Prager-Ziegler 

hardening model is developed.  The proposed model is capable of making explicit 

reference to shear and axial cyclic material properties in different directions. Hence, 

the hardening parameter accounts for yield asymmetry and directional anisotropy.The 

application of the model to the multi-axial loading of AZ61A is carried out. Uniaxial 

cyclic tension-compression and shear responses of the material is employed to calibrate 

the material constants in the proposed model. The model is then utilized to predict the 

stress hysteresis under 90
o
 out-of-phase non-proportional multi-axial loads. Results 

show very good agreements with the experimental results.  

 

 

INTRODUCTION   
 

Environmental and energy concerns has forced transportation sector to seriously 

consider light weighting of vehicles. In automotive industry, a 10% vehicle mass 

reduction reduce fuel consumption by 5.7% - 7.4% [1] which in turn reduces 

greenhouses gas emission by a large factor when considered at a global level. 

Magnesium (Mg) being the lightest structural metal on earth has shown promises in 

playing a crucial role in weight saving in transportation and other industries [2]. 

Currently, Mg consumption in automotive industries is mainly toward non-structural 

components, and is averaged at close to 5kg per cars manufactured in North America 

[3]. Further mass reduction should include load-bearing components that are under 

cyclic loads with variety of load histories including multiaxial loads. Design of fatigue-

critical components made of Mg requires cyclic plasticity modeling of this HCP metal.  

 

 Among Mg alloys, wrougth Mg alloys have high specific strength and are good 

candidates for load bearing structures. These alloy show a few unusual chracteristics 

that have made their mechanical modeling challenging. Yield asymmetry which is the 

difference in yield strength in tension and compression, and directional anisotropy [4] 

are the main characteristics to be considered in any plasticity modeling of Mg alloys. So 
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far there has been two approaches in developing suitable plasticity models: crystal 

plasticity methods, and phenomenological continuum methods. 

 Microstructural methods are based on crystal plasticity that is based on hcp lattice, 

the deformation mechanisms, texture orientations and other microstructural properties 

of the material. The two main deformation mechanisms for Mg alloys in room 

temperature are twinning and basal slip [5]. In addition to basal slip and twinning, 

pyramidal and prismatic slip systems influence the deformation in specific conditions 

[6-8]. Interaction between deformations systems, activation of slip mechanisms in 

different thermal and mechanical conditions and texture orientation are some of the 

parameters that are considered to develop a constitutive model based on crystal 

plasticity. These models are implemented in finite element programs [9-10] or as 

numerical methods, e.g.,VPSC model  [11-13] and are verified by uniaxial tension and 

compression tests. However, due to computational complexity these methods are 

applicable to problems such as uniaxial tension or compression and not yet available for 

more complex real-life engineering problems. 

 The second approach, which is traditionaly well established and  has recently 

received more attention in modeling Mg, is the phenomenological approach which is the 

basis of the present research. In this approach, the constitutive models are represented 

by considering macromechanical behavior of the material independent of 

micromechanical structure. Phenomenological constitutive models are based on 

developing a yield criterion and adopting a suitable hardening model. Examples of yield 

loci are modified von Mises [14], Drucker-Prager [15] and CPB 2006 [16]. Two-

Surface plasticity [15] and Frederick-Armstrong [14] and combined Isotropic/Kinematic 

hardening [16] rules have also been considered as hardening models in order to predict 

the evolution of yield surface. Similar to crystal plasticity methods, phenomenological 

constitutive models are often implemented as material models in FE programs such as 

ABAQUS [14, 16-17] or LS-DYNA [17] . 

 In this paper, an anisotropic hardening rule based on Prager-Ziegler hardening 

model is developed.  The proposed model is capable of making explicit reference to 

shear and axial cyclic response of material in different directions. Hence, the hardening 

parameter accounts for yield asymmetry. The application of the model to the multi-axial 

loading AZ61A [18] is carried out.   

 

 

BACKGROUND   
 

Figure 1 shows a stable cycle of Mg AZ31B under fully reversed strain-controlled 

tension-compression test. This figure represents a typical cyclic behavior of wrought 

Mg alloy in the extrusion direction (c-axis perpendicular to the extrusion axis).  Portion 

1-2 in Figure 1 is a part of the cyclic curve showing yielding prior to point 2. The 

deformation mechanism associated with this part is slip as the tension causes 

contraction along c-axis. The unloading and reverse loading portion 2-3-4 which causes 

extension along c-axis activates the extension twins and hence yields due to twinning. 

Twinning causes a rotation of 86
o
 with respect to c-axis as shown by the green 



hexagonal prism showing route 3-4 in Figure 1. The unloading from compression, 

portion 4-5 in Figure 1, show release of twinning strains, detwinning, which makes the 

curve sigmoidal shape. This will again cause rotation back to untwined stage. The final 

portion is loading in tension with slip yielding from 5-6. 

 

 
Figure 1: Cyclic behavior of AZ31B at strain amplitude of 0.6% and its corresponding deformation 

mechanisms [19] 

 

 The yield asymmetry in tension and compression is a major characteristic observed 

from Figure 1. Comparison of points 2 and 3 in the graph shows that yield in 

compression after unloading from tension is much smaller than yield in tension. It is 

noteworthy that even the virgin material possesses a different yield in tension than 

compression. The choice of proper yield function is hence narrowed. The nonmasing 

effect is another characteristic of the cyclic behavior of worugth Mg alloys. The 

unsymmetric shape of the hysteresis limits the freedom of adopting a proper hardening 

rule for modelling this behavior.  While the use of isotropic hardening is rulled out due 

to change in yield in tesion and compression, current kinematic hardening rules may 

also be inadequet because of the change in size of yield surface dictated by the twinning 

(3-4 in Figure 1) and detwinning (4-5 Figure 1). Moreover, the sigmoidal shape of 

return reversal (4-6 in Figure 1) requires special treatment.  
 On the other hand the cyclic shear behavior of wrought Mg alloys is very different from 

cyclic tension.  

Figure 2 shows the cyclic shear behavior of extruded AZ31B in tubular specimens cut 

along the extrusion deirection. Unlike the cyclic tension, the cyclic shear behavior is 

symmetric and possesses masing effect. A simple Ramberg-Osgood relation can model 

the cyclic curve and produce hysteresis at different shear strain ranges.   
 Figure 1and  

Figure 2 show behavior in extrusion direction. However, wrought Mg alloys have directional 

anisotropy.  



Figure 3 show the monotonic behavior of AZ31B in extrusion, transverse, and 45
o
 in 

tension and compression. A cyclic plasticity model for wrought Mg alloy should be able 

to take into account such anisotropy. 

 

 
 

Figure 2: Cyclic shear of AZ31B [3] 

 
 

Figure 3: Monotonic behavior of AZ31B extrusion in 

extrusion direction (blue), transverse direction (green) and 

45o (red) [19] 

 

 

PROPOSED CONSTITUTIVE MODELING 
 

The three major elements of plasticity modelling are the yield function, flow rule, and 

hardening rule. Yield function defines the onset and subsequent yieldings and dictates 

when the plasticity calculations need to be followed. It also provides an equivalent 

measure of mutiaxial stress which assists the material parameter extraction from a 

simple stress-strain curve. Mises yield function is the most common isotropic yield 

function and its generalized form in terms of Hill’s yield function is applicable to 

anisotropic materials. More recently, anisotropic yield functions capable of modelling 

yield asymmetry have been proposed by Cazacu and Barlat [20], and Lee et al [15]. 

 Flow rule builds a constitutive relation between the increment of plastic strain and 

stress tensors. Most common form is the associated flow rule where the plastic potential 

is the same as the yield function. A measure of effective plastic strain is usually 

associated with the flow rule. This measure assist material parameter extraction and also 

defines the magnitude of the plastic strain tensor. 

 Hardening rules model the evolution of the yield surface and identify their location 

in the stress space. There are two general forms of hardening rules known as kinematic 

hardening and multi-surface models. The first cyclic plasticity model, with the goal of 

accounting for the Bauschinger effect, was proposed by Prager [21]. Armstrong and 

Frederick (AF) [22] proposed a nonlinear kinematic hardening model by adding a 

nonlinear recovery term to Prager’s model. Chaboche [23] proposed a model with 

multiple nonlinear terms to better simulate the hysteresis loop. Another class of cyclic 

plasticity models, multi-surface, was first proposed by Mroz [24]. Mroz introduced the 

concept of the field of constant plastic modulus applicable to multiaxial loading 

conditions. The complexity of multi-surface models lead to the introduction of the two-
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surface plasticity model presented by Dafalias and Popov [25] and Krieg [26] to 

improve computational efficiency. 

 It has been shown [27] that AF model is capable of defining bounding stress 

surfaces with different shapes through careful selection of its material parameters. This 

potentially allows for including the role of an anisotropic yield surface into a hardening 

rule capable of modeling anisotropy. Hence, the following anisotropic form of Ziegler’s 

hardening rule is proposed, 
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      (1) 

 

 Where dp and   ̃  are the incrments of effective plastic strain and backstress, 

respectively. Also,  ̃ is the stress tensor and   ̃  shows the direction of yield surface 

movement. The [ ] matrix in Eq. 1 includes the hardening or plastic moduli. The matrix 

form of [ ] allows for making reference to properties of material in different directions, 

and hence modeling anisotropic behavior. For example,              are defined based 

on cyclic properties in uniaxial tesion-compression in 11 (extrusion) and 22 (transverse) 

directions while       depicts the behavior in cyclic shear with respect to 12 direction. 

With Eq.1 taking care of anisotropy, by considering a low value for initial size of the 

yield surface one can take any measure of yield function to identify plastic loading. To 

this effect and to make use of well established Mises associate flow rule, Mises yield 

and equivalent stress function and associated effective plastic strain is adopted here.   

 The major task is finding proper forms for the elements of the [ ] matrix. Using Eq. 

1, the flow rule and the consistency condition (i.e., the stress tensor should always be on 

the yield surface during plastic loading), the multiaxial plastic moduli is, 
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With {n} being the normal vector. The multiaxial plastic modulus has the flexibility of 

being calibrated independently in different directions. The three distinct characteristics 

of Mg cyclic behavior, yield asymmetry, sigmoidal shape due to twinning and 

detwinning, and symmetric cyclic shear, discussed in the previous section are now 

modeled by choosing suitable forms for [C] matrix. To allow yield asymetry in cyclic 

tension-compression C11 is taken in the following form: 
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Where L and U refer to loading and unloading,    is the value of plastic modulus right 

after onset of yielding and assumed to be the same for L and U; 11 refer to the axial 

components. For allowing the sigmoidal shape of cyclic tension-compression smooth 

Heaviside step functions are taken for 𝛥  in the following form, 
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Where h, and d are material constants and z11 corresponds to plastic modulus at stress 

point 11. Due to the symmetric nature of cyclic shear,  Ramberg-Osgood relation is 

adopted for C12, in the following form with K and n being the material constants for 

cyclic shear curve: 
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APPLICATIONS TO MODELING CYCLIC BEHAVIOR OF AZ61  
 

The model is applied to cyclic behavior of AZ61 [18]. To be able to incorprate the 

effect of the strain amplitude,   , on the material constants, an axial strain memory 

parameter,   , is employed. Using the uniaxial cyclic tension-compression and cyclic 

shear at different strain amplitudes, the calibration constants in Eq. 4 and 5 were found 

and are reported in tables 1. It was found that Eq. 4 would be best fitted to data by using 

a two-term function for loading and one-term function for unloading.  

 

Table 1: Material constants for AZ61 

 
AZ61 First term Second term 

    ( ) -70          
                   

  ( ) -294300           
                    

  ( ) 40 20 
    ( )          

                 0 
  ( ) -311100 0 
  ( ) 90 0 
Shear K= 297 MPa, n=0.267 

 

Figure 4 shows the uniaxial cyclic curves reproduced using the proposed model as 

compared to experimental results. The comparison is over a wide range of strain 

amplitude, from 0.3% to 0.9%, and the predictions are in good agreement with the 

experimental results. Note that the mean stress and the maximum and minimum stress 

responses in tension-compression that shows yield asymmetry are well predicted by the 

model. The shear strain amplitudes are also over a wide range covering strain values 

from 0.57% up to 1.6%, with very good agreement between prediction and experimental 

results.  

 With the calibration constants obtained from uniaxial curves, the multiaxial stress-

strain response of AZ61 under out-of-phase loading was predicted by the model. Figure 



5 shows the prediction results compared to experiment. Both axial and shear responses 

predicted by the model are in good agreement with the experimental results. 

  
Figure 4: Model prediction and experimental results; (a) tension-compression; (b) shear 

 

 

 
 

Figure 5: Model prediction and experimental results for hysteresis under 90
o
 out-of-phase loading 

for                 ; (a) axial stress-strain response; (b) shear stress-strain response 

 

 

CONCLUSIONS 

 

An anisotropic cyclic plasticity model based on modified Ziegler hardening model 

capable of modeling yield asymmetry is proposed. The modification entails a matrix 

format of the hardening modulus. Material behaviour in different directions is present in 

the matrix containing the hardening modulus parameter. The material constants in the 

model are calibrated using material response under cyclic axial and shear loadings. A 

Heaviside step function for axial loading and Ramberg-Osgood power law function in 

shear loading has been employed for calibrating the model. It is shown that the model is 
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able to produce sigmoid shape and asymmetric hysteresis loops in axial direction, and 

symmetric hysteresis loop in shear direction. The model is employed to predict the 

cyclic tension-compression, torsion and multiaxial behaviour of magnesium alloy 

AZ61. The model’s predictions are found to be in good agreements with experimental 

observations. 
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