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These equations define a surface where the two solutions must match, The expression in quadralures

is obtained for the upper bound on the timit load for a structure made of material oheying the von
Mises yield criterion and loaded with a Jorce acting in the z-direction of a eylindrical coordinatey
system. The upper bound on the limit load is determined for a tubular T-joint with the brace fixell *~
perpendicularly to the chord of rectangular cross section,

Introduction

Limit load solutions are convenient tool for the plastic design of different kinds of
structures (see for example Baker and Heyman (1), Save and Massonnet (2), Sobotka (3,
Malinin (4)). The limit load is also an important input parameter for some models in
fracture mechanics, for instance for the Engineering Treatment Model proposed by
Schwalbe and Cornec (5). The rigid plastic analysis is a suitable technique for obtaining

limit load solutions because:
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1. It was shown by Drucker and co-authors (6) that limit loads estimated, using the rigid-
plastic material model, are applicable for materials which have to be assumed to be elastic-
plastic.

2. More detailed analysis of beams based on the elastic-plastic material mode} showed that
very small settlements or rotations of supposedly fixed supports can make very large
differences to the computed values of the bending moments (Baker and Heyman (1), p.51).
Since the exact boundary conditions cannot be satisfied in practice these solutions are not
suitable for engineering applications.

A great number of investigations on the plastic design of structures are based on the concept
of generalized variables introduced by Prager (7). When applied to beams, plates and shells
the generalized variables (stresses and strains) usually follow from fthe Bernoulli’s
hypothesis that plane cross sections remain plane and orthogonal to the deformed material
axis (Baker and Heyman (1), Save and Massonnet (2)). This assumption is accepted as a
direct consequence of the fact that structure elements are thin in certain directions. For
plastic design with Bernoulli’s hypothesis it is also usually assumed that shear stresses do
not influence yielding (Save and Massonnet (2), p-59). An important aspect in the concept
of generalized variables when applied to beams, plates and shells is the fully plastic moment
which results from the discontinuous stress field at a cross section where a plastic hinge
appears. This moment is proportional to the tensile yield stress. The rate of internal energy
dissipation at this hinge, which is needed to obtain an upper bound on the limit load, is
expressed through the fully plastic moment and relative angular velocity of two coupled
elements of a structure. Hence, these clements are assumed to be rigid. In this case it
follows from the general theory that the rate of internal energy dissipation at the hinge,
which forms the velocity discontinuity surface, should be related to the shear yield stress
rather than to the tensile yield stress. In order to take this into account it is necessary (o
consider a kinematically admissible velocity field near the plastic hinge. Such solutions for
different kinds of bending fracture specimens have been found by Ewing and Richards (8).
Green (9), Hu and Albrecht (10), Lee and Parks (11) and Joch and co-authors (12). These
papers also review previous research articles. All these solutions have been based on
kinematically admissible velocity fields involving a single line with a velocity discontinuity
((8), (10)-(12)) or on the slip line fields (9). Thus, the first group of solutions is restricted to

plane strain or plane stress conditions because more general cases would require some
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deformation within a volume of the bedy. In the second group the characteristic method has
been adopted. Since equations for non-planar deformation are not hyperbolic (except for
Tresca material and sometimes for other yield criteria with the assumption of plane stress
conditions) this approach cannot be extended to more general cases. In order to develop an
approach based on a single line with a velocity discontinuity for axisymmeiric and three
dimensional deformation it is necessary to find an appropriate kinematically admissible
velocity field compatible with some rigid body motions. In this paper such a kinematically
admissible velocity field is proposed for axisymmeltric and three dimensional deformation.
This velocity field involves two velocity disconlinuity surface, one is situated between the
deforming material and the motionless rigid material, and the other is between the
deforming material and the rigid material moving along the z-axis of a cylindrical
cootdinate system. These velocity discontinuity surfaces form circles on any meridian plane.
The radius of these circles and the position of their centers can depend on the polar angle.
Analytical expressions for the velocity components are found near both Jjump surfaces. Then
equations which need to be solved to get a contimmous velocity field in the whole deforming
material are obtained. These equations also determine a surface where the two solutions
must be matched. Some convenient coordinate systems are introduced for calculations of
the work rate at the jump surfaces. The expression in quadratures is obtained for the upper
bound on the limit load for a structure made of matcrial obeying the von Mises yield
criterion and loaded with a force acting in the z-direction of a cylindrical coordinate system.
A particular velocity field is considered with the assumption that the normal vector to the
interface between two material volumes, where the different analytical expressions for the
velocity components are valid, has zero component in the z-direction of a cylindrical
coordinate system. This velocity field is used to determine the upper bound limit load for a

tubular T-joint with the chord of a rectangular cross section.
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General velocity field

We first consider axisymmetric deformation without rotation in a cylindrical
coordinate system rfz. In this case the only possible rigid body motion is a translation along
the z-axis with a velocity vo. Hence, a general kinematically admissible velocity field must
be compatible with such a rigid body motion and with a motionless rigid zone. We assume
that the intersection of a velocity discontinuity surface and a meridian plane is a rigid-
plastic boundary in the shape of an arc of a circle. Lel r and z be the coordinates of the
center of this circle and pg be its radius. We begin with a rigid-plastic boundary between a
motionless rigid zone and deforming material. In this case the velocity vector must have a
zero normal component on the rigid- plastic boundary. It is convenient to introduce a pp
coordinate system on a meridian plane with the following transformation equations

r=r1,+pcosQ, Z=2z,+psing (H
In this coordinate system the equation for the jump line is p = pg with pp being a constant.
Therefore, the velocity component v, must vanish at p = pq.
vp=0at pP=po 2)
On the other hand, it follows from geometrical considerations that

v, =V, CcosQ+V,sing , (3)
with v, and v, being the velocity components in the radial and axial directions respectively.
We assume that condition (2) is satisfied not only at p = p gbut also for the part of the body
near to this surface. Then, combining (2) and (3) we obtain

v, cos®+v, sing=0 (4)
The incompressibility equation in a cylindrical coordinate system has the form

dv, dvy Vv, IV,

O + 30 + " + o 0 5)
Because we consider axisymmetric deformation without rotation the velocity component
vg=0. Therefore, it follows from (4) and (5) that

v, =-—v, tan@ (6)

T
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dv, iy dv, ( 2 Op )—O ;
8z an(pa -V, cos” (pa +r tan(p = N

or in terms of the radial velocity v,

_av_+v_ t avf.{. in 2 a(p'—O 8
dr r coq)az Ve sin ‘Paz" @

Equation (7) can be transformed by means of (1) to the following form

.av -1 0V, IV,
(Z Z) (r'_ro K—r(r——l)

The general solution to this equation is
v, =v,(r- ro)r"F(Q) (9)

2 2 * . . 0
where (Q = (Z - Zo) +(r - 1'0) and F is an arbitrary function of its argument, . It

follows from (1), (6) and (9) that the velocity component V; is given by

v, =~v, (z—~zo)r"F(Q) (10)
We now consider a rigid zone moving with velocity v, along the z-axis. A unit normal
vector to the line p = p;, on a meridian plane may be written in the following form
ﬁ=costp€-+sin(p€ (1
with € and€ . being the unit basis vectors of the cylindrical coordlnate system. The
velocity vector on the right side of the rigid-plastic boundary s '
v =y,3, (12)
From (11) and (12) we can obtain the velocity component normal o the rigid-plastic

boundary

v =99 foy o SING (13)

Combining (13) with the condition that the normal component of velocity must be
continuous across a rigid-plastic boundary, it follows that the normal component of velocity
on the deforming side of the rigid-plastic boundary is

vﬁp) =v, = vff) =Vosing at P =po (14)
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As before, we assume that velocity v, satisfies equation (14) not only at p = po but in some
volume of the deforming material near to the surface p = po. Then, substitution {14) into (3}
leads to
v cos@+ v, sin@=v,sing
Transforming this equation and combining it with the incompressibility equation (5) we find
that
v, =V, -V cot@ (15)

Z

av, v,

or

One can see that equation (16) is the same as equation (8) therefore the general solution

ov
——+v sin” (paa(p (16)

(10) for the velocily component v, is still valid, however, function of integration may be

different so that

v :—vo(z—zo)r"ql(Q) (17

r
where @ is an arbitracy function of €. Then, it follows from (1), (15) and (17), that the

velocity component v, is given by

v, = V0[1+(r—r0)r“ltf[)(£2)] (18)
Finally, it is necessary to match the velocily field given by (9) and (10) with that obtained
from (17) and (18) to get a continuous velocity field in the whole deforming material. To
this end we let zo = 7, and 1y = I, for the velocity field (17) and (18), andzg=zZ, and o =Ty
for the velocity field (9) and (10). Letr = f(z) be a line on a meridian plane which is the
boundary between material volumes where different analytical expressions for the velocity
hold. Since velocity must be continuous on the line r = f(z) it follows from (9), (10) and
(18) that

(z— zb)F[(z—— zb)2 +(f(2)- zb)2]= (z—- za)(I)[(z—- Za)2 +(t(2) - 23)2]
f(i—)(;)-rLF[(z—zb)z (1@ -2,) |= 19)
i+ f(?( Kot af(u-2,) + (et~ 2, |

Thus, if function £(z) is prescribed then equations (19) define the functions F and @. Then,

by means of (9), (10}, (17) and (18) the continuous velocity field in the whole deforming
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material can be obtained. Generally, the function f(z) can be determined by minimizing the
functional following from the upper bound theorem.
Up to now we have dealt with the axisymmetric velocity field. However, it is easy to show
by substitution of (9), (10) and (17}, (18) into (5) that the velocity fields are still solenoidal
if 2y and ro are functions of 6, and F and & are functions of Q2 and @ (Q is given by the
different expressions near each velocity discontinuity surface). This leads to
nonaxisymmetric kinematically admissible velocity fields. In this case f can be function of z
and €. In order to obtain the equation describing the jump surface, T = 0, for a
nonaxisymmetric velocity ficld we introduce the components of the gradient vector to this
surface in the cylindrical coordinates as follows

grad Z =0X/dr, grad,X=r"'9dX%/d0, grad,% =3%L/0z 20
On the rigid-plastic boundary between the motionless rigid zone and the deforming

material, X, the equation v grad X, + v_grad X, = Ois to be satisfied that, by means
of (9), (10) and (20), results in

(= )azb/az - (z - zb)BEb Jor=0
which can be integrated to give

Z,=(r-5,) +(z-2,) —p? =0 @1)

where py, is an arbitrary function of 8. On the rigid-plastic boundary between the moving
rigid zone and the deforming material, Z,, we have

v.grad X +v,grad, X, = vgrad, X,
By means of (17), (18} and (20) this equation transforms to

(r - rn)aza/az - (z - za)BZa [or=0
which leads to

Eaz(r—ra)2+(z—za)2—p::0 (22)
where p, is an arbitrary function of 0. It follows from (21} and (22) that the intersection of
the jump surface X, with any meridian plane is a circle of radius p, with its center at the

point given by r = 1, and z = z,. For the jump surface Z, these values are p,, r,, and z,

respectively.
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Plastic work rate

It is necessary to take into account the energy dissipated at the two jump surfaces and
within the deforming material. Let k be the shear yield stress and v; be the component of the

velocity tangent to the jump surface then the work rate at a velocity discontinuity surface is

w, =k[f [vT]dE 23)

with the usual square brackets notation for the amount of jump. It is convenient to use an

given by

infinitesimal surface element dX in the coordinate system pB¢p. From geometrical

considerations it is clear that

dZJ grad’X + grad’x / Igrad)ll = p,rdedo (24)
where the value of r corresponds to points on the jump surface. The components of the

gradient vector and its magnitude can be found from (20) using (21) and (22). Then

expression (24) for the X, surface transforms to

dz, = Jr’p? +[(r—r,)da/d0 +(z— z, )dz, /d0 +p,dp, /6] dgdd

which further transforms when combined with (1) assuming that p = p, to

dz, =p, W/(ra +cos (p)2 + [cos @dr, /d6 + singdz, /d6 +dp, /de]z dodo (25)

Analogously, for the jump surface Xy, we have

d=, =p, J (r, +cos@)” +[cosqdr, /0 + sin pdz, /d8 + dp, /d6] dedd 26)

The amount of velocily jump on the surface X, can be found from (9) and (10) as follows

[v,c] = 1/vfl+ vi= vor”llF(Q)lJ(r - rb)2 +(z— zb)2

which, when (1) and (21) are substituted, transforms to

[ve] = vo(z, +py coso) [Flp2 o, @n

Substitution of (26} and (27) into (23) gives the magnitude of the rate of internal energy

dissipation at the X surface
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W, =kv0><
_pifFe)

e

2
On the jump surface Z, we have |[V:] = Jvf + (vz - Vo) and it follows from (17) and

(r +p cosq‘;)2 (coscpdrb +smq)d p"] dodf (28)
)L A de 6 ' de

(18) that

[v,c] = vy |¢I)(Q)|\/(z ~Z, )2 +(r—1, )2

The further transformations due to (1) and (22) lead to

[v.] = vo(t, +p, coso)”|@(o? )p. 29)

Substitution of (25) and (29) into (23) gives the magnitude of the rate of internal energy

dissipation at the Z, surface

Wi = kvy X

o(p? ]

P 2 dr, .90, J (30)
H . +p, cos (p)\j(rﬁpacosw) +(cos<p o dpd

For axisymmetric deformation the derivatives vanish in expressions (28) and (30) therefore

de

in this case we have

Wy, =kvop2|0(p2) [ dede, w,, =kvopl[F(p2)[[dede @
The limits of integration in (28), (30) and (31) have to be determined from geometrical
considerations for a specific structure. A possible geometry of the deforming body, rigid
zones and coordinate systems are shown in Fig.1. Functions z;{r,0) and z,(r,0) are known

since they are defined by geometry of the structure, At any value of 8, the @ coordinates of
points A, B, C and D in the p8¢ coordinate system, Pa, @, Pc and Pp can be found from

the following transcendental equations
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2,(r, +p,c059,,0) =1z, +p, sing,
zl(rb +p, cosq)c,ﬂ)= z, +p, sing,
Zu(fa +p, cosch,B)z z, +p,sinQ,
z,(rb +p, cos(pD,B)z Z, +p, sin@,

The solution to these equations defines the limits with respect to ¢ of the integrals in (28)

(32)

and (30) which, then, can be transformed to

W, =kv, X
Ip le l J 1+(r +p cosq)) —coscpdr +sin@—=> dz, dpb—zd(pdﬁ
PIEATE on() b Th do de doé |
W, = kv, X G
2r op(0) ~ 12
) 2 -2 dr, dz, dpﬂ
£p3|¢(p )%_[e)JH(ra +p, COS(p) _ 0 dB 8 dgdo

In an axisymmelric case, integration with respect to ¢ in expressions (31) can be carried out

to give

W = kvopi © Pf]f[(PB(B)—(PA(G)]dG,

2z (34)
Wy = kvopilF(pzbj-[[(PC(B) —¢p (G)]dﬂ
0

(The limits with respect to @ are not necessarily from 0 to 2% but also determined by the
geometry of the structure. However, we restrict our studies to problems which require the
limits from 0 to 2n because the limits for other structures can be obtained from simple
geometrical considerations). We adopt the von Mises yield criterion. In this case the work

rate within the deforming material is given by

W, = kJ‘JJ‘ . fzéijéij dVv + kj\ﬂ 2¢,6,dV (35)
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Fig.1 Possible geometry of the deforming body.
Here V, is the material volume where velocity field (9) and (10) is valid and V; is the

material volume where velocity field (17) and (18} is valid, and f—:ij are the components of

the slrain rate tensor which can be calculated from (9}, (10) and (17), (18) respectevely. In
the cylindrical coordinates we have

: =—v0(z_zb)[2r(r—rb)ﬁ F], éz:2v0(r—rb)(z—zb)£

ol r oQ

e G SR

. Vo lpdz j OF 4z, dry
2E‘.r9—r2 {F 10 +(z—zb)aﬂ[2(z—zb) 10 +2(r—r, 10 1 (36)

%, = —I—S{F%+(r o) e ) 1]}

for velocity field (9) and (10) and

£, =——V°(Zrz_ Z“)[zr(u—rﬂ)g%—m], & = 2V0(“f;)(z-za)3$
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‘*“@Mn=%°-{[%—1)¢+2[<r—r,.)2—(z—zj]g;g}
Zé"’::_g{ (iize ) [(z Z)-—+2r )c:i—e 1}} o7

%, - - "o{q)j; (-2 22 oo, ) e ‘j{;_l}}

for velocity field (17) and (18). For axisymmetric deformation all derivatives with respect

to 8 in (36) and (37) vanish. The total internal energy dissipation rate for the structure
shown in Fig.1 is determined as
W, =W, +W +W, (38)
If the surface z(r, 8) and z,(r, 8) are stress free and an external force, P, is applied to the
moving rigid material in the z-direction then the work rate of external forces is given by
w, =Py, (39

The upper bound on the limit load, P,, is determined from the equation W, = W;. This,

combined with (38) and (39), results in
P, =v5'(Wy + W, +W,,) (40)
where W, and W, are determined from (33) and W, from (35) with the use of (36) and

(37).

Particular velocity field

As a particular case we will consider the function {(z) = 1, in (19) with r, being a
function of @, In this case equation (19) are satisfied by
Za=m=% and F=0=Fy41)

where

Fo= rn/( 1, - 1) (42)
Now we are able to define the velocity field near the motionless rigid zone by means of (9),

(10}, (41) and (42)
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(r=n)r, (z=2,)r,

and near the moving rigid zone by means of (17), (i8), (41) and (42)

(r —I, )rm _ (z— Z, )rm
v, = v0{1+ (ra —rb)r , V. ==V, (Fa ~ r,,)r (44)

Both (43) and (44) give a continuous velocity field in the whole deforming material. With

these velocity fields expressions (36) and (37) are simplified to the following

i __VD(Z_Z(])rm
o (ra _rb)r2

26, V—r(r" ~ 1]
i (r _fb)r r
) VoI, dz dln[fm/(fa —fb)]
™ (r, —orb)r2 { d90 ~(e-a) do @
Yolm {drb (r_rb)dln[rm/(ra _rb)]}

= a6 "

in the case of velocity field (43) and

VO (Z Z, )[‘

(r —rb)

g, =0,

N T
£ = (r, =5, )c* £.=0 B = (ra—rb)r2

ooy ( IJ

l —_r
25",{9 _ Vol {dzo _(Z_Zo)d n[rm (ra lb)]} 46)

2, =

(r, -1, ) | d© d8

Vol {dra _( \dln[rm (ra —rb)]}

r—r1,} do
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in the case of velocity field (44). Substitution of (41) and (42) into {33) gives the rate of

energy dissipation at the jump surfaces as

Wy, = kv, X

2n 2 pc{0)

p 2 dr dz, dp, T
j—b—"' J \/1+(rb+pb costp)_ [cosw—b+sin(p—°+%] dedo

o To ~ Ta o t0) de dé
4
w,, = kv, X “n
Zn 2 ‘Pa(e) 2
pbrm -2 dra . dZO dpn ]
— 1+{r +p. cos Cos +sin@——+—>| dopdd
bt -, m)\/ (i o, cose) [ Pao "0 T a | ¥

Using (45) and (46) the rate of energy dissipation within the deforming material can be

obtained from (35) by direct substilutions,

Limit load for tubular T-joints

We apply the particular velocity field given in the previous section tv determine an
upper bound limit load for tubular T-joints with the chord of a rectangular cross section
(Fig.2). Taking into account geomelry of the structure it is natural to assume that

29=0,p,=pp=h2andr,=R (48)
where h is the thickness of the chord wall and R is the outer radius of the brace, We first
apply the axisymmetric velocity field. Then, 1, and 1, are constants and should be

determined from the upper bound theorem. Combining (35), (40), (45)-(48) gives

. (1+h*)
P =g — X
r, —1

Mer a2 (e Y w4zt (1Y .2 )
[ =+ 21| dwdz+ [ [JZo+|==1| drdz+mn
° r r r r

0

where T, = r,: -\/h*2/4— z2 and N = 1+\/h*2/4— z% . We have introduced here the

dimensionless quantities P~ = P, /-fHCR2 L h' = h/R. r,: =T, /R, r:] = rm/R.
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2R | 2R

Fig.2 Shape of the tubular T-joint
Expression (49) has been minimized numerically with respect to rn: and r: . The value of
r,; is given by
r, =1+h"/2 (50)
Variation of P and I': with h”are shown in Fig. 3 and Fig.4 respectively. This solution
holds if
r, <R+L (r; <1+L) 1)
where [ = L, /R (see Fig.2 for definition for L). If this inequality is not satisfied, that can

be checked for any specific structure using Fig.d, than nonaxisymmetric velocity field

should lead to a better upper bound. We assume that (48) and (50) are still valid for such

. - . * * .
nonaxisymmetric velocity field. Moreover, we assume that the curve Iy =T, (9) is an

ellipse given by the following equation

Iy =31‘(1+L")/\/(1+L’)2 cos’0+a"” sin’ 52)

With these assumptions expression (40} can be transformed to
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. P
T 4kR?

,fzh.rzr2 * 2 * 2 2 2 x\2
1+h |} |4 - d
2| | ( J z +(r—"—1) NGl ( r"J drdzd0 +
o -1 /yr r rz(l-rh) do

wf2h2 . 2 2 2 (53)
+h 4 1 1— d
2| | ( ] z +[——1) R r)2 [ r"] drdzd6 +
o -1 rz(l—rb) do

nf2 ¥\ 1 2 *\2 r/2 *

. I+h cos” @ dr, 1+h
2h™ . 1+ —2 | ded®+hx | ——do

O(rb—le “ih )Z(dBJ % I

nf2 (rb +h cos@ o o

P

0.26 TP _

axisymmetric field i
02T —_ ; : ///
: — — — nonaxisymmetric P

field -

0.14 1

0.08 1

0.02 By

0.02 0.06 0.1

Fig.3 Variation of the limit load with h*.

The equations for r; and r; given after (49) are still valid, however, r depends here on z and
0 since r,: depends on 0. r,: and dl‘; /de are determined from (52) with a’ being a
coustant which should be calculated from the upper bound theorem. As an example we take
L = 0.5. In this case it follows from Fig.4 and inequality (51) that the axisymmetrical
solution is applicable for h' < 0.03.For h’ > 0.03 the upper bound has been obtained by
minimizing {53) with respect to a V'unuon of the upper bound and the a’ value, which

determines the size of the plastic zone, wﬂh .ﬁ‘ are shown in Fig.3 and Fig.4 respectively.

One can see from Fig.3 that the limit load based on the nonaxisymmetric velocity field is

386




higher than that based on (he axisymmetric velocity field. However we should note that for

the example the solution based on the axisymmeltric velocity field is not valid for h* >
0.03.

Iv™* or a*
2 -l' (z/
!/
e
//
1.8 ///
8 T+ s
-
//
V.
((/
~
1.6 + »”
‘P”
-
h*
14 } —
0.02 0.06 0.1

Fig.4 Variation of the size of the plastic zone with h*,

Conclusion

Axisymmetric and nonaxisymmetric kinematically admissible velocity  fields
involving two velocity discontinuity surfaces are proposed. Expressions in quadratures for
the limit load are given. The upper bound limit load based on the proposed velocity fields is
found for tubular T-joints with the chord of a rectangular cross section. For thin walled
Structures the axisymmeltric velocity field leads to a better upper bound. This solution holds
if inequality (51) is satisfied. Using Fig4 this inequality can be checked for any specific
structure. The nonaxisymmetric velocity field with the elliptic plastic hinge is used to oblain

the limit load for structure, for which the inequality is not satisfied.
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