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ABSTRACT: An exact solution is proposed for general boundary value problems (displacement,
traction, mixed) in transversely isotropic medium. The geometry of the problem considered is
sywnietric but the load is arbitrary. In cylindrical coordinate system Fourier expansion and Hankel
integral transforms are applied with respect 1o circumferential and radial coordinates respectively.
As an example, a penny-shaped crack in an infinite transversely isotropic body is considered with
arbitrary norinal tractions on both sides of the crack. Author assume that the crack surface loading

Junciion p(l', 9) is an even function of 8. The closed form expressions in terms of functions

describing the fractions on the crack surface are given under assumption that the functions involved
may be expanded in Fourier series with respect to circumferential coordinate. Some numerical tests
using ABAQUS sysiem are presented and compared with theoretical values.

Notation

0130690 ,,0¢,,0,,,0,, - components of the stress lensor
€.1EgsE,,5E5,E,,, B, - COmponents of the strain tensor
u,,u,,u, - components of the displacement vector
€,15C12,C13,€5; and ¢,, - elastic constants

Introduction

Theoretical idealizations adopted to analyse of variety of problems encountered in
geomechanics, fibre-reinforced composite and in micro-mechanics defects in solids often
reduced to the solution of a boundary-value problem involving a transversely isotropic
semi-infinite or infinite elastic media. The geometries relevant to many practical
applications are axisymmetric but involve loading and boundary conditions which do not

preserve axial symmetry. For isotropic bodies this was studied especially by Muki [1].
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Some previous papers treated of these problems [2] - [12] were restricted to the derivation
of general solutions for transversely isotropic media in terms of potential functions and the
application of these solution to axisymmetric problems of elasticity.
Some quantities of obtained solutions are compute using MapleV program very useful
either in numeric calculations or in symbolic conversions [13], [14].

Parallel to symbolic investigations some numeric computations based on FEM
model using in ABAQUS system [15] - [17] is introduced. This program offers its users a
wide spectrum of numerical tools for both linear and nonlinear analyses. It is possible to use
in the finite element analysis various types of the elements. All these capabilities, together
with description of computation J-integral and fracture problems model, the set of input
parameters, physical model of foundation and its geometry, are also included in the paper.
Results of the numerical experiments performed and especially their convergence with the
theoretical solutions confirm usefulness of ABAQUS system for computational analysis of
solid mechanics. FEM programs in the nearest future may become very useful tools in

fracture mechanics [18].

Theoretical solutions

We shall use the notation (r, 0, z) to denote cylindrical coordinates. Consider the

elastic bodies possessing transverse isotropy. If we take the z-axis as the axis of elastic
symmetry, then the stress-strain relations in cylindrical components are:

O, =CEy TC12E +CE L,

Ogg =Cp2€, +C Bgg +C3E5,,

G, =Cp3€; +CaEpg + Cusys

Op = (Cu —cl2)£r9’ (1
G, =2C,E,
Og, =2C4Eq,»

Strain components are given by Cauchy relations:
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where

Vz—._ai.. li+ii
ot ror rt o8t
4
A, =% O, O, “
"o T r roe

The solution of the equilibrium equations (3) may be given in terms of three potential
functions @, (r,0,z), which satisfy the equations [9]

.. 1@
V' + ERESCH b 4 ,69 = OJ
[ s~ dz° }P (r.0,2)

L

i=1,2,3 (5)
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where s> and s,” are the two roots of the quadratic

4 2
C33C 448 —[cucaj —cp{en +2°44)]5 ety =0, ©)

and
s, =(c) —¢;2)/ 2¢,,

The displacement and stress components are given as:

0 19
_E(k(pl + (Pz)"' ?%@):

19 ( ) 9 N
uﬂ ae (pl (P" ar (pJ’
z a "PI +k(p )
h afidyp
k+1 -2 k )| =2
c44 ( * )8 (P'-HP SJ[ r BB (p +(P') ar(r J0 )]
s b d (l E)cp3]
=-(k+1 2 2
o = (razlet @) 25’[ Pk + )+ 5 150
o, 2
;—(k'l"l)a ( @, +s, (8)
O 2 aflad ) (.P
ok R | D q R <1
Cu > l:ar(r a0 (ke - *
c 9"
—Z = k+1
R P URSE ) o
G, 1 @ ¢
k+1 e
Caq = (k+ ) r 960z 092091+ 02 oroz
where
k=(°33512_944)/(C13+C44)' (9)
In order to determine general solutions for potential functions q}i(r,e,z); i=1,2,3,
governed by eqs (5) the following representations are used:
@,(r,0,2) = i[q)im (r,z)cos(mB)+ 9., (r,z)sin(mﬁ)], i=1,2
_m=0 (10)

0,(1,0,2) = mz [0:0 (1, 2)sin(m) — (1, 2} cos(m0)},
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Then, we find that eqs (5) reduce to the forms

(Bi +S—:3-£—;J(¢im,¢i‘m)(r,z)= 0, i=1,2,3 (11)
where
B2 =_3'7+li_m_', 12)

We denote the Hankel transform of (¥, Z) with respect tor, namely [9] by the symbol
Hm[¢im (rz) r> E_,]= jrcpim(r, z)f , (Er)dr. (13)
0
Ju denotes the Bessel function of the first kind of order m. Linear partial differential
equations for ¢, and ¢, in a domain in which r2 0can be transformed to ordinary

differential equations for the Hankel transform ¢, (E2)=H,[¢(r,2); r—> €]. Once these

im
equations have been solved to yield an expression for E;im (§, z), we make use of the inverse
theorem to obtain the solution & (r,z) of the original partial differential equations; this

states that

¢,.m(r,z)=Hm[$im(F;,z); E_,—-)r]. (14)
Using _
Ho[Br0u(r,2); r—&]=-£%3,,(5.2) (15)
we find that eqs (11} are equivalent to the equations
i__ 2p2 1 - (16)
[azz 5 g ]¢im(§’ Z) =0

and similarly for E(E,z)

The transformed equations (16) can be solved in terms of exponentials and unknown
functions of the transform variable E. The inverse transform is applied to recover the

dependence on the r coordinate in the form of an integral equation. The solution is

¢im (r) Z) = ﬁi Tg_lHim (g’ si Z)Jm(&l l')dg, (17)

Oin(2) =9, [ETHL (6 5:2)0. (6.1,
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where

Hio(6:507) = Ay (85 + B (8)e ™ ()
H(E5e) = AL (RS L0
(T Cera T s e e T oy
‘01'—044(1( )( "So) B, = c44(k+1)(sl_sz)sﬁs— ouss (19)

and where Ay, Bim, A’ and B, are arbitrary functions of the transform variable £ to be
determined by using the given boundary conditions.

Equations (7) and (8) together with equations (10), and (17) to (19) represent the complete
general solutions for equilibrium state of a transversely isotropic elastic medium. Note that
in egs (10) the first term produces deformations which are symmetric about 8 =0 and the

second term yields deformations that are antisymmetric with respect to 8 =0 axis. It is

noted that the solutions corresponding to ¢;,,(r,z) can be obtained immediately by making
the following replacements ¢,,(r,z) = ¢1n(r,2), A, (€} o AL (E), Bin (&) — B (&),
cos(mB)—)s'm(mB) and sin(m6) — —cos(m6) . Therefore, in the ensuing analysis we
consider solutions represented by only ¢im(r,z). In analysing half-space problem we

assume that the components of the displacement vector all tend to zero as z—ee. This
requires A, (§)=0 and A;,(€)=0. The axisymmeiric solution {corresponding to m= 0)

is already known.

Accordingly, the displacements u,,u, and u, and the stresses G, ,04,0,:05Te,

and o _ can be expressed in the following form:

2¢,,u (r 0, z)——Z{WI[I(SEHM(&,SIZ)—slHZm(E,,szz)]G,m(ér)dE_,

=0

%THM(a,ssz)ezm(a.-)da}coscme),

m=0

+ SLT H,, (g, 5, z)G - (E_,r)dl’;} sin{m®),
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c44uz(r‘,9,z)_0(+—n(s|-_s—n§£[H;m E_,s z)- kH, ( 5, z)]] (ﬁr)dﬁcos(mﬁ);

c,,(r,B,z)*—hZ{(Sl s I&[s Hlm(ﬁ s z) s,H ( s, z)]_] (E_,r)d?;
(k+1)(s - )r“ks :Hin (8512) = 5,H,0 (6,8,2)] [61 (&) + mG, n(80)]eE

- 2s, -r_-[ H,,, (&5,2) e (E_,r)dE_,} cos(m),

o

cw(r,e,z) Z[(Su s, I@[s H,m .8 z) s,H, (E_, S,Z )].I (&r)df;

2s,*
m_ J-[ksH,mﬁsz) s,H, ( sz)]

[ ,m( r)+ msz( r)—2§er( r)]df‘,

+2s, lI H,,(Es,2) ., (E_,r)dE_,} cos(ms),
20

Gu(r,e z)— Zjﬁ[s H, T; s z)—s H, ( 8 z)]) (I;r)dgcos(me),

am(r.e,z)=-%i{&—+,§’-(~°;_—s)f[ks )5 657 ki

)

I (F, 5,2 1 ,m( r)+ msz(ﬁr)— ErJ (ﬁr)]dﬁ}sin(mﬁ),

0

Gﬂz(rez) 2{( J.I;[H.m sz §s zk} (?ér)dE_,

s,—s

+ J-gHJm & SJZ)G 1m(§r)d§} sin(m@),

Gm(r,B,z)=—2[2(S| . II;[H],“ Q s, z ,,,( ,szz)b,m( r)d!;

m=0

) { EH,n, (g, 5, z)G om (?;l)df_} cos(me@),
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where

i (67) = T uar (61) = Ty (B1), | 22)

G =]
G,n (E_,l’) =)o (E_,r) +J (ﬁr),
and

n z b5z :
Hin(,52) = A, (E)e™ -B,(E)e™™", i=1,2,3. 23)
In many boundary value problems concerning the half-space z20 we have the boundary

conditions
O, (r,8,2}=0, 6,,(r,0,2)=0. (24)
From equations (21) we find that these conditions are satisfied if we take
B (€)= Bua ()= (8). Ban(t)=0.
B,,(§)=B;,()="¥,(¢). B;,(£)=0

and in addition A, =A;, =0 for half-space problem.

(25)

The solution corresponding to these forms of the arbitrary function leads to the expressions

w(r,0)= G_IC— i {Hm [ﬁ"‘}’m (); r]cos(mﬂ) +H, [T;‘I‘P,; (&) r]sin(me)} , (26)

z~ m=0

p(r,0)= gs{Hm [, (&) Joos(m6) + H,,[¥, (€):rsin(me)} o

where we have written w(r, 8) for vu,{r, 0, 0) and p(r, 9) for -c,,(r, 8, 0) and G, =c,, ,

Cc=(k +l)(s, - sz)/[(k —l)s,sz] , and

H,[¥,(€)r]= Ié‘*’m (E) . (Er)dt . (28)

Assume an infinite media with the penny-shaped crack {z =0,0sr< a} opencd up under
a pressure f(r, 9). As the solution of this problem we take half-space with additional
boundary conditions on the edge. So besides egs (24) the unknown function ‘I‘m(ﬁ_) must

hold also the fellowing conditions:

p(r,0)=1(r,0), 0<r<a
(29}
w(r,0)=0, r>a.
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Substituting equations (26) and (27) and expanding the function f(r,8) into Fourier series

result is in the following pair of dual integral equations

mi;{Hm [‘Pm (&), r]cos(m9)+ H_ [‘{’m (Lﬁ); r]sin(me)} =

0
= ;[f (r)cos(m@)+ f;, (r)sin(m6)} 0Sr<a (3)
iﬂ{Hm[ EeJcos(me)+ H, [e ¥, () r]sin(me)} <0, r>a a1
where )
£,(r)= ﬁiff(r,e)de ,
f.(r)= ;ll r,8)cos(m)d 32)

f.(r)= %Tf(r,ﬁ)sin(me)de .

Equations (30) and (31) must hold for all values of © (0<6<2r). If we equate the

cocfficients of cos(m0) and sin{m®} in both sides of eqs (30) and (31) we obtain

Hm[‘{’m(ﬁ);r]zfm(r), 0<r<a
(33)
Hm[«‘;‘l‘{‘m &) r] =0, r>a
and
Hm[‘{‘;(ﬁ);r]= f.(r), 0<r<a
(34)
Hm[f;" ‘P,;(Lf,);r]= 0, r>a
Consider integral equations (33). If we take the represeniation
¥ (8) = 8" [ (6 o (BE)dt (35)
or integrating by parts:
V()= & [ G\ (W s (B)dt - E g, (a1 (Ea), (36)

0
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where, with the assumption that t"?g_(t) - 0 as t — 0"

G, (f)=t"" -j—t[t'“'”zgm ()] 37
and making use of the integral
- b*(a?-b*) "
-A - - — -
_'[t 1 (at), (bt)dt = o ol H(a-b), (38)

where H() denotes Heaviside’s unit function and T" denotes Tamma function [20] we find

that if r>a H,[E"¥,(£); r]=0 whileif 0<r<a

¢ pm-12
H,_ [‘Pm (g);r]= J%r'"’_[tTij(t—)dt . {39)
b

We have a similar result if in (37) and (38) we replace ¥, g,., G,, by ‘¥,n, Em> G-

It follows therefore that equations (33) and (34) are satisfied if ¥ () and ¥,,{E) are given
by representations of the type (35) (for ¥, (8) ga(t) > g, (t)) with

2 j-t""”G() —£.(1),

‘\“’ -t
5 G “0)
J; [ o

The integral equations (40), which are of Abel type, are readily shown to have the solutions

tm_zlg ()= 2J“——drm”f =0

J—_

O

so that W(E) is given by (35) or (36) with g,, G given by (41),, (37) and (32). Making
use of (35) and (38) we find that, if 051 <4,

H,[6 ", E)r] = ( f_ (42)

and similarly for ‘P;(F,) From (42) it follows that the shape of the crack is given by the

(41)

formula:
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cos(mﬁ)

I Jt? e

Similarly, by making use of (36} and (38) it follows that

V2

tim [2n{x - ]”' [ lE)ir]= —Tgm(a) :

I
W(r,e) = G.C

r—=a’

The basic quantities of fracture mechanics are lotal crack energy:
= [ do [ rw(r, 6)f(r,0)dr
0 [}

J-integral:
_ 1L aw
" 2na da

and the stress intensity factor [21]:

e

K, = lim [2m(r - a)]”3 [p(r.0)]

From (43) and (44) we find

W= Cfnc _!t"x(t)dt,
where
2 1 2 . 2
20 =[z,0)] +52_';{[gm(t)] +[gm(t)]}
and

K, = g{go(a) + g[gm(a)cos(mﬂ) +g (a)sin(mﬂ)]} .

[ L gm- 1.'- .-[ 'm“mg:n(t)dt .

sm(m(-))] :

(43)

(44)

(45)

{46)

(4n

(48)

(49)

(30)

If we consider the special case of a penny-shaped crack subjected to axisymmetric normal

load p(r,8)=p, =const , then basic expressions yield:

for)=po. &:(1)= \Epot”’, ga(t)=gn(t)=0,

wlr)=—2Po_ o7

-r-,r<a
G, C
_ 4pya’
T 3G,C’
e 2p;a ,
nG,C

(51

(32)

(33)
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=

Example results of eqs (53) together with the numerical tests are presented in chapter

Ky =

Numerical results.

If the penny-shaped crack is subjected to normal asymmetric load p(r,(-)):p0 on a

sector0<r<a,

<o (function p(r,8} is even function of 6 ), then

£(r,0)= p.{auzs in{m a)cos(mﬂ)]

A 0<r<a (54)
0, r>a
2 a O
go(t)= ;potu-;;
m-2k .
ga(t)= p0 t"%¢ § ol sin{ma) (55)
(m-2k+1) ™
k=0
m-1 2 m
where €, =1, n= form=1,3,5,...and €, ==, n=—-1form=2,4,6,.
2 T 2

The paramelers of fracture mechanics are:

a’ [On!2 [ ﬁ(m—2k) sin(ma) 2

[
W= +—>Yig XL , 56
3G.C | n® 22[ m oo m (56)

and

" . [T(m-2k)
K, = 2p,a %+26m o sin(ma)

Jr m [I(m-2k+1) ™

k=0

cos(m9)|. (57)

On Figure 1 is presented nondimensional parameter include in brackets of equation (57)
which shows influence of magnitude of loading arca on values of stress intensity factor

obtained from equations 53 for load distributed on whole crack for 6 coordinate.
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Figure 1. Influence of magnitude of a loading area on stress intensity factor K;

Fracture mechanies with ABAQUS system.

ABAQUS offers the evaluations of two contour integrals for fracture mechanics
studies: the J integral and C, integral. The J-integral is usually used in rate-independent
quasi-static fracture analysis to characterise the energy release associated with crack growth,
and C, integral can be used for time-dependent creep behaviour, where it characterises creep
crack deformation under certain creep conditions, including transient crack growth,

Several contour integral evaluation at each location along the crack front may be compute.
Each ¢valuation may be thought of as the virteal motion of 4 block of material (defined by
contours) surrounding the crack tip.

For consideration of Linear Elastic Fracture Mechanics - LEFM and the stress conhcentration
at a sharp crack in a linear elastic infinite plate in ABAQUS we have the following relations
for mode I (opening mode):

- stress G, at the tip of the crack is:

)

o (r=a+p,z=0)=o = K, (58)
( )P"° T \2mp f2mp '
- stress intensity factor K,

K, =]l]|_r£o'zz(r=a+p, z=0),/2np , (59)
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- J-integral

ou
i= Ir (Wn, - sx—lcm) ds. ~ (60)
Relation between mention above magnitudes for plane strain and isotropic media has the
form:
y=tovlg (61)
E "

The value of J-integral is independent of contour, I', taken around the crack tip and it
means that J is path independent.

Most fracture mechanics problems can be solved salisfactorily using only small-stram
analysis. Focused meshes that should normally be used for small-strain fracture mechanics

cvaluations is shown in Figure 2,

1/4 paint nodes

crack plone

crack fronl

Figure 2. Typlcal focused mesh for fracture mechanics evaluations

The crack t1p strain singularity depends on the material model used, and is introduced to

ABAQUS using different types of constraints of the nodes at the crack tip of a focused

mesh, For two-dimensional problems there is:

1. for linear elasticity - with-a square root singularity, p™* (where p is crack tip radius),
two corner nodes at the tip and the midside node between them must be tied together,

2. for perfect plasticity - with p™' singularity, comer nodes are moved independentiy,

midside nodes femain at midside points rather than being moved to the 1/4 points,
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3. for power-law hardening - with combined P~ and p~' singularity, midside nodes are

moved to the quarter points, tip nodes are allowed to move independently,

All these capabilities were tested on the example,

Numerical resulis

Problem of penny shaped crack in transversely isotropic solid has been considered
as the numerical experiment to verify the obtained results sensitivity. Radius of the crack
was considered as 2.0m. and result investigations was performed to the depth of 20.0m.
Distributed load on both sides of the crack s | MPa. The model of the problem has
symmetry about plane of the crack and due to axjal symmetry of the' load in numerical FEM
researches, it was necessary to define only a geometry of the modei in the plane r-z. Such
half-space was model by rather coafse mesh of elements: 131 CAXSR elements (8-node
biquadratic axisymmetric elements with reduced integration) and 14 CINAXSR elements
(one-way infinite axisymmetric 5-node quadratic elements, reduced integration). Three
contours to evaluate J-integral have been introduced to the model (three values in Table 1
for each test). Introduced material is characterized by five independent constants
(introduced to ABAQUS using ENGINEERING CONSTANTS parameter in ELASTIC
option). Investigations were provided for cadmium and magnesitm, the more often
obcun‘ing natural anisotropic materials and isotropic media too. Some numerical results for
cadmium, strongly anisotropic material, together with the theoretical obtained values are
presented below,

Tests within magnesium and for isotropic material have good convergence with
theoretical solution [magnesium - 50.679N/m, isotropy (E=78000Mpa, v=0.25) -
30.607N/m.] and are omitted in the paper. Differences here are from 1% to 2%.

Nuinerical tests in ABAQUS with partial loaded crack are omitted here because the 3D

model is very large and it cannot be run on most workstations,
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Table 1. Values of J-integrals for cadmium

Method of evaluation J-integral [

a)

N
m

Theoretical solution from equation (53)

63.023

elements CAX8 with middle nodes

70.215
72.809
72.853

ABAQUS elements CAX8R with middle nodes
tests for linear

69.810
72.804
72.838

elasticity
elements CAX8 with 1/4 nodes

78.115
77.095
77.275

elements CAX8R with 1/4 nodes

78,755
77.129
77.337

Concluding remarks

Numerical tests show some information of J-integral evaluation in ABAQUS and obtained

theoretical solution. Here are some of them:

a) theoretical and numerical results differs for strongly anisotropic materials but has good

convergence for near isotropic or isotropic ones,

b) numerical results have nearly correct values only for linear elasticity, but not for perfect

plasticity or power-law hardening model of behaviour,

¢} better results obtained with the midsides nodes laying in the midside points, not 1/4 nodes,

d) differences of J-integral for contours of evaluation indicate a need for mesh refinement,

¢) elements within reduced integration or without it give almost the same resuits.
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