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ABSTRACT A new version of a three dimensional fatigue limit criterion proposed previously
is presented. In this new criterion, local microscopic variables associated with the stabilized state
are used. It is shown that they can be evaluated from classical macroscopic stresses. A
computation algorithm is presented, and an application of the new criterion to an experimental
ball bearing is described. The prediction of the crack initiation point and the critical load are in
very good agreement with tests.

Introduction

For more than a century, much research has been devoted to studying fatigue
in metals. Many experimental results have been collected and criteria
developed for structures subjected to uniaxial loadings. For example Good-
mann and Haigh diagrams appear useful when predicting life under simple
tensile or torsional loading with any mean value. Despite the great number of
studies which have been made, engineers are still relatively embarrassed when
they have to design structures which are subjected to three-dimensional
loading, e.g., (1).

This present paper aims to present a new model to calculate fatigue strength
when complex multiaxial loadings are involved. The proposed method derives
from an original criterion given by Dang Van (2)(3). In France, practical
industrial applications have already been successfully analysed by this criterion
(4)(5). The most recent development of this theory is presented herein,
illustrated with one practical application. Let us note that at the present time,
the method can only be applied to high cycle fatigue. More precisely, it is
focused on fatigue limit stress levels. Before developing our proposal, multi-
axial loadings at various degrees of complexity are first discussed.

Proportional loading with zero mean load

An example of this type is in-phase tension—torsion with a zero mean value. In
this case, a criterion directly derived from tests can be applied, e.g., the
Gough-Pollard (6) or the Yokobori (7) criteria that rely on a combination of
the peak tension and torsion stresses. They can also be composed in the form of

* Ecole Polytechnique, 91128 Palaiseau Cedex, France.
+ SKF-France, 8 Avenue Réaumur, 92141 Clamart Cedex, France.

479



480 BIAXIAL AND MULTIAXIAL FATIGUE

principal stresses because the principal directions remain fixed and the loading
is in-phase. These expressions are not very different from the equivalent von
Mises stress, or the Tresca stress. Although extrapolation is required, multi-
axial loading induced in fillets or notches in a structure subjected to an
alternating simple loading can be studied by this approach and the von Mises or
Tresca stresses are reasonable approximate values.

Froportional loading with a non-zero mean load

Some criteria which are multiaxial extensions of Goodmann and Haigh's
relations can be applied. The uniaxial stress amplitude is replaced by a measure
of the amplitude of the equivalent von Mises or Tresca stresses, An example is
Sines criterion (8) which can be written

HAX — AY)? + (AY = AZ)? + (AZ — AX)}I2 + a(X+Y+Z)=c¢
(1)
Here AX, AY, AZ are amplitudes of the principal stresses, and X, ¥, Z are
mean values over a cycle of the principal stresses. The second term in equation
(1) is in fact the mean value of hydrostatic tension PH. The Crosstand criterion
(9) is written in a similar form, but this time PH stands for the maximum
hydrostatic tension in the cycle. Many more eriteria have been proposed (see

reference (1)). Unfortunately, as Garud states, their formulation is often
ambiguous and so they are difficult to use.

General multiaxial loading

In this case, principal directions are not fixed, and so one has to be very careful
in formulating criteria, In particular, their range of validity has to be
appreciated in the following way.

(i) Their formulation should be intrinsic, that is to say they should not
depend on a particular coordinate axis. Many criteria do not fill this
requirement in their initial formulation.

(ii) They should be representative of the loading path. Stresses and strains
which generate fatigue damage have to be precisely described. In pre-
vious approaches, the salient features of the fatigue phenomenon, such
as crack growth direction and the development of the parameters with
time, t, either do not appear (for instance criteria which only imply a
relation between peak values of stresses of strains), or are rather poorly
formulated. Most of the ambiguities encountered when trying to apply
these criteria, are due to this latter difficulty.

(iii) A multiaxial fatigue criterion should allow correlation of the experimen-
tal results, obtained for various loading paths, with sufficient accuracy.

These are the main requirements. However, they are extremely difficult to



ON A NEW MULTIAXIAL FATIGUE LIMIT CRITERION 481

fulfil in totality. It might be said that none of the existing criteria can answer all
these conditions. These difficulties led us to propose another model.

Let us notice that nucleation of fatigue cracks is a microscopic phenomenon
which happens at the scale of one or a few grains. At this scale the material is
neither homogeneous nor isotropic, and local responses (stresses gy, plastic
strains p;;) can be very different from macroscopic ones (respectively, 2, Pii)
calculated or measured by the engineer. What can be perceived has already
been somehow ‘filtered’ by the macrovolume element (corresponding for
instance to the dimension of the strain gauge) or by the test sample. That is why
a direct approach through correlation of macroscopical test parameters, which
is the basis of most of the existing models, is insufficient.

To work out rules for fatigue prevention, Dang Van (2)(3) postulated a
fatigue criterion using rmicroscopic variables (o;(t), for example) in the appar-
ently stabilized state; this is a state of elastic shakedown if no damage occurs and
can be evaluated without ambiguities through a procedure outlined below. The
main principle of the criterion is that the usual characterization of the fatigue
cycle (for example, S, Aequivatents - - ) is replaced by the local loading path
at each time, ¢, of the cycle (e.g., current microscopic stress) and so damaging
loads can be distinguished.

Notation

0] Loading parameter

3 or % Macroscopic stress tensor (ordinary stress tensor)
Eor E; Macroscopic deformation tensor

Por Py Macroscopic plastic deformation tensor
PH Macroscopic hydrostatic tension

T Macroscopic shear stress

SorS; Macroscopic deviatoric stress tensor

gor g; Microscopic stress tensor

EOIE; Microscopic deformation tensor

P OT pj; Microscopic plastic deformation tensor

ph Microscopic hydrostatic tension

¥ Microscopic shear stress

5 OIS Microscopic deviatoricstress tensor

n Normal to a glide plane

m Direction of the glide

ay; = d(nm; + mn;) Orientation tensor

Qi Microscopic residual stress tensor

oi Stabilised microscopic residual stress tensor
devo Microscopic deviatoric residual stress

0 Period of the loading cycle
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The proposed model
Principle of the method

For homogeneous structures the initiation of fatigue cracks takes place in
critical zones of stress concentration such as geometric discontinuities, fillets,
notches, etc. Moreover, the phenomenon is microscopic and local and usually
occurs in some grains which have undergone local plastic deformation in
characteristic intracrystalline bands. Local parameters (o, £) have to be
evaluated in these critically oriented grains, as a function of the loading Q(r).
The different steps of the calculation are described in Fig. 1.

No fundamental problem is encountered in step 1: using a finite element
method, 3;(r), E;(1), P;i() can be calculated if the material’s constitutive
equations are known.

Concerning step 2, which corresponds to the macroscopic to microscopic
passage, the problem is solved by the following model. For this purpose two
scales have to be distinguished (Fig. 1). A macroscopic scale, characterised by
an elementary representative volume V(M), surrounding the point M. This is

the usual scale considered by en gineers. Macroscopic variable 3, (M, 1), E(M,1)
are assumed to be homogeneous in V().

A smaller microscopic scale of the order of grain size corresponds to a
subdivision of V(M). The microscopic quantities g,  are not homogeneous

and differ from §=l, E. Even if the mean value of o equals 3, the local stress can
fluctuate. More precisely, we have at any point P of the volume V(M).

(P, 1) = Ayw(M, P)2 (M, 1) + 0ii(P, 1)

In the above equation Ajink(M, P) is the elastic localisation tensor (10) and
0ij the local residual stress field. Near the fatigue limit, the applied stresses are
rather low and it is reasonable to suppose that o tends toward a pseudo shake
down state (strictly shakedown corresponds to no damage). Then Melan’s
theorem states that for time 1 = #, a time independent residual stress field o*(P)
exists such as

(P, 1) = Ay (M, P)S (M, t) + of(P)

never violates the local plastic criterion.

In the chosen fatigue criterion, local variables associated with the shakedown
state are used. They can be evaluated, as will be shown later, through some
assumptions. Hence, as g;; is known for any time ¢, the characteristics of the
loading path can be precisely taken into account. The fatigue criterion can be
stated as follows. Crack initiation will happen in critically oriented grains of
volume V(M) which have undergone plastic strains, if, for at least one time ¢ of
the stabilized cycle, we have

flo(P,0} =0 for Pe v(M)
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Fig 1 Different steps of the proposed fatigue calculations: macroscopic and microscopic scale

To give a more explicit form of the criterion, some physical understanding is
required, namely as cracks usually occur in intragranular slip bands, the local
shear stress acting on these planes is an important parameter. In the same way,
hydrostatic tension

oh = trace o

3
is an important parameter with regard to the opening of cracks. Taking these
remarks into account, one can chose for f(o) a relation between r and ph. The
simplest criterion is a linear relationship between these parameters; sce

(2)(3)(5), i.e.
f(o) =t xaph+ b

For such a criterion, the endurance domain is delimited by two intersecting
straight lines D and D’ symmetric with regard to the 7 axis; Fig. 2. On this
figure, two paths I'; and T, have been drawn to illustrate our purpose; one (1)
is damaging, the other (I'}) is not. Both show the same shear stress amplitude
and the same mean hydrostatic tension. For classical criteria (Sines, for
instance) these two paths should predict the same damage. This illustrates the
advantage of calculating via a method based on current stress state.
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Fig 2 Endurance domain and two typical local foading paths T', anq I,

Evaluating local stresses

Local stresses, ¢ have to be evaluated as functions of niacroscopic stresses, ¥,
to apply the method. In the general case this difficult problem of localization
has not yet received a mathematical answer. An approximate solution is given
here, involving some physical assumptions.

Let us recall that, in 1939, Orowan (11) proposed a unidimensional fatigue
model based on an evaluation of the local shear stress cycle in critical elements.
The model relied upon the following hypothesis: those elements which undergo
plastic deformation are surrounded by an elastic matrix; pure isotropic harden-
ing is assumed. Orowan’s reasoning is summed up in the schematic of Fig. 3;
point x stands for the limit state of local stresses and is graphically constructed,

Using similar assumptions, Dang Van (2)(3) generalized this method to
evaluate the local stresses o;(t} in the stabilized state. The following supple-
mentary hypotheses are needed:

H1 — only one slip system is activated. This system is defined by n, normal to
the slip plane, m the slip direction;
H2 -- microscopic strains show isotropic hardening;
H3 - micro elements undergo the macroscopic deformation E, i.e.:
e + py = E;
since macroscopic plastic strain Py is negligible at the fatigue limit.
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Fig 3 Orowan’s construction for evaluating limit shear stress in the critical element (11)

The following result occurs
ii(1) = Z(t) — 2a;To

where a;; = 3(nym; + myn;) and Ty is the mean value of shear stresses in the plane
where maximum shear amplitude occurs (this plane is defined by n).

Even if some industrial applications of this formula exist, automatic com-
puter analyses are not easy in the case of multiaxial loading. That is why another
approach has been derived where the previously stated assumptions are no
longer necessary. The only hypothesis will be that grains obey both isotropic
and kinematic hardening rules; this sounds more realistic than the H2
hypothesis. The main characteristics of the previous conclusion are found
again: in particular, the tendency of local shear to become symmetric.

For a simple understanding of this approach, let us first consider a cyclic
loading which induces in the neighbourhood of point M of the structure a pure

shear state on a plane normal to the Mz axis. For example, 2 (M, t) will have
Sixz and Syz as non-zero components, Mxyz being a fixed coordinate system
with respect to the material. Let this cycle (0 is the period) be divided into n
parts f;, 1 < i < n. The stress vector T (f) associated with various time t defines
a curve T which is divided into (n — 1) parts delimited by the end of vectors
MT, = MT(1,); see Fig. 4. Critically oriented grains in V(M) will slip. Their
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Fig 4 Tlustration of the scheme to compute the stabilized residual stress and the local shear stress

initial elastic domain C, is featured by the circle of radius R,, the centre of
whichis O (coinciding with M). As MT follows T, let T, be the first point outside
C,, plastic strains have to occur. As a result, the elastic domain is now C;. The
translation of the centre from O to O corresponds to kinematic hardening. The
growth of the radius from R, to R; is for isotropic hardening.

As the loads keep varying, active parts of the loading path will keep the
elastic domain changing in the way described above. After some cycles a limit
circle C;, with centre Oy, radius R, , is found. Thus Cyp encloses the whole curve
I' defined from the stress vector 7'(f) and elastic shakedown is thus obtained.
The term Oy M corresponds to the stabilized residual stresses ¢*. But to be more
precise, the following interpretation

T = 7+ p* corresponds to MT(f) = O.T — oM

with 7 being the local shear vector at time ¢ in the shakedown state.

The algorithm to determine the stabilized limit state as described above is
given in Appendix 1. For progressive isotropic hardening the stabilized state
occurs for the smallest diameter circle enclosing T'. We make the assumption
that this is a general result. For complex loading, von Mises’ norm will be easier
to handle. The last result is generalised in the following way: 3 (resp. o) is
divided in deviatoric § (resp., s) and hydrostatic part PH (resp., ph).
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% = 8 + PH &
o = s + ph 0 = S + dev g + PH 0y
The deviatoric part of stabilized ¢ (noted by dev ¢*) is calculated through
Min [Max J,{S;(t) — dev g;j}]

In this expression the maximum is to be taken on time t over acycle (0 < (< 0)
and the minimum is to be taken on dev g.

The algorithm used for this problem is given in Appendix 1.

A proposal of Mandel et al. (12) studying elastic shakedown of an elasto-
plastic structure with combined kinematic and isotropic hardening is now
employed. These authors propose the same formula and interpreted it as a
measure of the fluctuation of the elastic response at point P in the stabilized
state. Our more intuitive physical reasoning gives a better understanding when
applied to fatigue.

Results from Mandel et al. allow a more precise description of the method to
evaluate local stabilized stresses since they give a necessary condition for elastic
shakedown, thus generalizing Melan’s theorem. More precisely, let the elastic
domain of the material be defined by

g(0 — p) = k*(a, 0)

where 6 is the temperature, and « a time-increasing hardening variable, for
instance

r
Peg = L V(Gpipi) dt

and c a positive constant. Mandel et al. demonstrated the following result:

Let k be a strictly increasing function of @, and g a uniform continuous function, a necessary
condition for elastic shakedown will be that some time ¢, and some fixed stress oy (x) ateach point
x should exist such that

Y > ty, glo®(x, 1) — oy (x)} < k¥{a,, 0(x, 1)}

where a is the highest acceptable value with respect of the small strain condition and o°'is the
stress obtained if purely elastic behaviour is assumed.

In our case o is generally identical to macroscopic stresses %. As Mandel et
al. stated, this condition is of great interest because it is a local property in
opposition to the various classical extensions of Melan’s theorem. It is thus
easier to check. It should be noted that we have the same guide lines in our
model.

In discussion the following remarks are important

(1) Macroscopic stresses 2, are usually the stresses obtained through elastic
calculations. However, elastoplastic calculation may be necessary in some
cases, especially in a notched structure in which contained plastic strains
occur. The macroscopic hydrostatic tension may be different from the
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result obtained through a simple elastic calculation. Therefore, a
simplified method proposed by Zarka ef al. (13) could be very useful,

(2) In many applications, the components of the macroscopic stress tensor
vary in a sinusoidal way. Then, even if these components are out of phase,
the deviatoric stabilized tensor dev o* can be calculated as an ordinary

mean value of the stress deviatoric tensor S (¢) as can be easily shown; see
Appendix 2.

1 (2]
dev Q: = FJ Sl.l(t) dr
0

General procedure
Let us sum up the general procedure to perform fatigue calculations.
(1) Evaluate 3;(M, 1) Vi ; 0=r=<9¢

The components of 3. are referenced to a fixed axis with respect to the
material. In each volume element AV(M), 3 is constant Vp € AV(M).
The period 6 is the smallest time interval such that

Vri(r + 8) = i(t)

It is obvious that 26, 30, and so on can also be taken into account without |
any change in the final fatigue limit. However, in some practical appli-
cations, finding the period could be rather difficult. |

(2) Stresses are split between the hydrostatic part PH (¢) and the deviatoric

part S;(r).
PH(r) = ——tracef(f) ; 0sr<#
Si(t) = 25(t) = PH(1)oy; ; 0<r<@

(3) devp of the stabilized local residual stress o* is searched through
dev 5$ = Min [Max Jz{Sij(f) — dev Q'J}]

The minimum is to be taken on g and the maximum is to be taken on
(0 =< 1< 6) with the corresponding algorithm given in Appendix 1.

(4) The deviatoric part of the localized stresses is calculated from
Sij(r) = SU(I) + dev QE

(5) (1) = 4Tresca {s;;(r)} is calculated over the cycle period.

- 40)
(6) d = Max {b——ﬂph(f_){l

The maximum is to be takenfor 0 <t < fandifd = 1 fatigue failure will
occur,
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Obviously it is important to note that
Tresca [oy(r)] = Tresca [s;(£)] = Maxy, loy(£) — a3 (1)

where oy, 0y are principal microscopic stresses. Working this way, all couples
(r, Ph) are situated in the positive part of 7 of Fig. 2. All facets which could be
involved by the crack initiation criterion are automatically reviewed. Couples
(t, ph) verifying condition d = 1 are associated with defined facets and so the
criterion also gives the direction of crack initiation.

Application of the method

Classical test results are well correlated through the proposed criterion. Some
industrial applications in the multiaxial field also can be found in (4) and (5).

A recent fatigue study on an experimental ball bearing using the proposed
method is now presented. This second generation of integrated ball bearing will
support directly car wheels, taking the place of the naves. Under high acceler-
ations in curves, the rings of the ball bearings undergo complex triaxial cyclic
loadings which may initiate fatigue (Fig. 5) so these pieces are as yet over
dimensioned. To obtain mass optimization an experimental ball bearing has
been designed on the basis of the proposed criterion and tested against the
prediction of the model.

Real service loadings on wheel ball bearings are accurately determined from
recordings on vehicles. Analysis of the results by computer shows that these
ball bearings are submitted to both radial and axial tensile loads and to a
warping moment. The bearings support intermittent heavy loads, especially in
curves when the loads due to lateral acceleration are added to the weight of the
vehicle. These loads are applied to the tyre (see Fig. 5) and generatc a
multiaxial distribution of stress on the ball bearings, which varies as the wheel
rotates. This whole complex loading is taken into account in the design and
viability calculations of the integrated ball bearing.

The ball bearing ring analysed has been idealized using the finite element
method. Results provided by strain gauges at various points of the structure are
compared with calculations. By this means the degree of validity of load
description and the assumed boundary conditions can be checked.

Evolution of principal stresses and their orientation with respect to a radial
direction in the critical region is shown in Fig. 6. In Fig. 7, the evaluation of the

stress tensor 3, in the critical zone is plotted for one revolution. Note that the
coordinate axes are fixed with respect to the ring.

The loading path in the (z, ph) plane ata point near the critical zone is shown
in Fig. 8. Figure 8(a) represents the case where no crack initiation occurs.
Figure 8(b) represents the calculated limit case; the loading path intersects the
straight line delimiting the fatigue limit. This line has been determined for
annealed 100 C6 steel through torsion and tension tests on smooth cylindrical
specimens.
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'

i

Fig 5 Schematic of an integrated hall bearing, the ring of which undergoes complex triaxial cyclic
loading

In Fig. 9(a) the fatigue iso-criterion curves of the ring are plotted. Critical
points (i.c., those which first verify the fatigue criterion) are indicated by an
arrow. To allow comparisons, iso-Mises curves are plotted on Fig. 9(b) and
these critical points are not the same since they are near the screw holes.

Fatigue experiments on the ball bearing have been performed by The SKF
France Laboratory. The experimental results are in complete agreement with
the prediction of the model, i.e., the initiation point and calculated critical
point are similar (see Fig. 10). Also the predicted load is in close agreement
with experimental results. Below this load, no crack initiation has been
observed (Fig. 8(a)). For the predicted critical load, Fig. 8(b), initiation occurs.

These results should encourage designers of structures that have to resist
fatigue and possibly save on costly tests.
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Fig 8 Loading pathina(r, ph) diagram of a point in the critical zone for two cases: (a) no initiation;
{b) initiation (see also Fig. 10)

Fig 9 Component analysis: (a) fatipue isocriterion curves, Critical peinis are indicated by arrows
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Fig 9 Component analysis; (b) typical iso-Mises curve

Fig 10 The tested ball-hearing ring (arrows indicate fatigue crack)
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Appendix 1
How to determine dev o* in the general case

Cyclic evolution of tensor S is discretized in N tensor 8; associated with N
different times ;. '

—

]

b3
l<isN @

t:
lsi<sn
Variations 5,,; — S; are considered as infinitesimally smail. At each time £,

Ryis the current elastic limit and dev g, is the deviatoric part of the local residual |
stresses.

(a) Iteration principle; see Fig. 11
The question to be solved is how to define state (i + 1) characterized by 8., and
R;. 1, from i characterized by S, and R;,

The following process has been chosen, namely that displacement from i to
¢ + 1 is infinitesimally small. When going from ¢ to ¢, kinematic hardening
(displacement of the centre of the elastic limit circle — in general, of the elastic
limit sphere) and isotropic hardening (growth of the elastic mit — radius of the
circle) occur and can be described as follows.

Let us call D the ‘distance’ J,(S;,; + dev g;) and P the quantity D — R,. If »
is the coefficient of isotropic hardening for the grain, »P will be the growth of
the elastic limit R, So

Riyy = R+ =P (3)
As displacements are radial and as the distance between the new origin O,
and T}, has necessarily to be equal to R, dev g, is given through

D — R 3 =
‘T‘H (Sir1 + dev ;) 4)

dev g4y = dev o1 -
This calculation is iterated for each step (i) to (i + 1) and the stress cycle is
followed as many times as necessary to obtain convergence for dev ¢* and R.

(b) Initialization ~
The best initial values of R, and dev ¢ appearto be a nearly zero value and the
mean value of § , respectively, or

- 1 N =
dev o, = 'NE S %)

(¢) Convergence

It is obvious that convergence toward O, (dev o*) will improve as the radius R,
grows more slowly. Thus the isotropic hardening coefficient » should be as
small as possible. On the other hand, speed of convergence varies in the same
way as the coefficient ». Therefore, a compromise between good convergence
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Fig 11 The iteration procedure: definition of state (i -+ 1) from state (i)

and duration of the calculation has to be found. For example, for » equal to
0.05, convergence with a relative accuracy of 107 is obtained after 30 cycles
divided rather regularly into 30 points.

Appendix 2

How to determine dev p* for 3y varying as a sine wave

In many practical applications, the macroscopic stress tensor 3. has the particu-
lar form

As constants do not intervene in the calculation, Cis eliminated through a shift
of the stress origin. The active part is

3 = Vi sin (ot + @) @)
The hydrostatic part is eliminated and the remaining active part is
Sij = Sl.l Sil'l (ﬂ)t + ‘Ij)lj) (8)

As all linear combinations of sines gave a sine wave, all linear combinations of
sinusoidal tensors will give a sinusoidal tensor, in particular changes of spatial
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axes. So whatever the chosen spatial plane, the shear stress in this plane will
follow an ellipse.

It is obvious that tensor dev g * has the same symmetries as the loading path.
In particular, it must have the symmetries of an ellipse (relative to its two axes).
The only tensor respecting these symmetries is the null tensor. So the stabilized
deviatoric part of local residual stresses dev * is null and stabilized 5 is equal
to S.

The radius is calculated following the general procedure and appears to be
cqual to the mean value of the fluctuation of macro elastic deviatoric stress.
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