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ABSTRACT A new, generalized criterion of maximum shear and normal stresses in a fracture
plane has been formulated for multiaxial random loadings. From this criterion three particular
forms of previous fatigue criteria for a triaxial random stress state result, together with some
classical criteria for a multiaxial sinusoidal stress state. There are some formal limitations which
make a generalization for the range of multiaxial random loadings impossible in the case of three
other known criteria for multiaxial sinusoidal loadings, proposed by Gough-Pollard, Findley,
and McDiarmid. The limitations have been analytically determined.

Introduction

Multiaxial fatigue has been investigated for about 100 years and many different
mathematical models of the limit state of strength have been formulated. At
present we know more than 30 criteria of fatigue strength for multiaxial
loading, e.g. (1)-(5). From an analysis of these criteria it appears that some
parameters are unsuitable and can create misinterpretations. Conversely,
several important parameters are either neglected or misused. Misuse of
parameters occurs, for example, when terms employed in static strength
hypotheses are replaced by the cyclic range; e.g., by replacing static principal
stresses by amplitudes of sinusoidal stresses. Changes in directions of principal
stresses have been also ignored for many years. Studies concerning the
influence on fatigue of phase displacement between stresses can be instigated
by tests in which changes of principal directions occur during a full cycle of
loading, e.g., (6)(7).

Criteria for random multiaxial stress conditions should take into account the
random changes of directions of the principal stresscs (8)-(10), and so positions
of the principal axes at any time, ¢, should be determined. Using a simple static
rule for stresses 0, (1) = 0,(t) = 04(¢) or, for isotropic bodies, an equivalent rule
for strains &(t) = &(t) = &(r) leads to the observation that in many fatigue
tests of specimens under multiaxial sinusoidal loading the directions of the
principal stresses and strains change. The directions o,(r) and & (¢) also change
in a sinusoidal tension—compression (uniaxial) test (9)(11).
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In papers (8)-(10) five fatigue fracture criteria are presented for a random
triaxial stress state of an isotropic body in which the stress components have
zero mean values. It was assumed that a random tensor of stress is a narrow-
band six-dimensional stationary and ergodic Gaussian process. Stress and
strain fatigue criteria were formulated on the assumption that fatigue fracture
of materials is defined only by those components of the stress or strain states
which were acting on an existing fatigue fracture plane (or are acting on an
expected fracture plane). In the case of energy based criteria it was assumed
that fatigue fracture is determined by the amount of energy equal to the specific
work related to the strain in one direction, namely that connected with the
fatigue fracture plane. It has been assumed also that the position of the fatigue
fracture plane is described by mean values [, g, Ay (n = 1, 2, 3) of the
direction cosines of the principal axes of stress.

In this paper a new, generalized form of one of the five criteria mentioned
above for random triaxial stressing is presented. Limitations are also presented
that make it impossible to create a general theory for the other criteria of
random loading under sinusoidal cycling.

A generalized criterion involving the maximum and normal stresses acting on a
fracture plane

Let us make the following assumptions.

(1) Fatigue fracture is caused by the normal stress 0,(¢) and shear stress (1)
acting in the § direction, on a fracture plane with a normal 7.

(2) The direction ¥ on the fracture plane coincides with the mean direction of
the maximum shear stress 7,,,,.,(¢).

(3) Inthelimitstate that conforms to the fatigue strength, the maximum value
of combined 7,,(f) and o,(¢) stresses under multiaxial random loading
satisfies the following equation

{Btns(l) + Kan(f)}max,l = (1)

where B = constant for a particular form of equation (1), and K and F =
material constants determined from sinusoidal fatigue tests,

The left side of equation (1) can be written as {W(1)}max, and should be
interpreted as the 100 per cent quantile of the random variable W. If the
maximum value of {W ()}, exceeds the value of F, then damage will
accumulate resulting in fracture (Fig. 1). The random process W(r) can be
interpreted as a stochastic process of the fatigue strength of a material.

The positions of the unit vectors 7 and T are determined with the mean
direction cosines of the principal axes of stress or strain. The proposed
averaging method uses weight functions, which lead to conformity between the
expected position of the fatigue fracture plane and experimental results

©)1(12).
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Fig 1 Random stresses in the fracture ptane determining fatigue life under multiaxial toadings

Many results of fatigue tests under multiaxial sinusoidal loading show that for
elasto-brittle materials the fatigue fracture plane is often perpendicular to the
direction of the normal stress having the maximum amplitude 0, - For elasto-
plastic materials the fracture plane is often one of two planes where shear
stresses have the maximum amplitude 7,;. There are also intermediate pos-
itions of fatigue fracture planes.

In some special cases we can expect that the unit vector, 7, coincides with the
mean direction of the maximum normal stress o, (f) (Fig. 2),1.e.

n= li_ + fﬁl]‘— + ﬁlE (2)
where , f, T are unit vectors of the axes x, y, z, respectively. The normal stress
o,(t) in the direction 7 is equal to

0,(1) = Po,t) + iog, (1) + A20,,(6) + 2lpiog(r) + 20A,0,(0)

+ 21i3£,0,,(f) (3)
In other special cases we can expect that the unit vector, 5, coincides with the

mean direction of the maximum shear stress 7;(¢), and the fracture plane is
determined by the mean position of one of the two planes on which 7,(f) acts

(Fig. 3).



428 BIAXIAL AND MULTIAXIAL FATIGUE

82
A
#1118
E AT
; )
' : g, “n“’,-;
I i
L ;Jm— ————_:I-...
// y:’.w

3

Fig 2 Direction of the unit vector, #, when the fatigue fracture plane is perpendicular to the mean
divection of the maximum normal stress (), Here 1, 2, 3 are the mean positions of the principal
stress axes
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Fig 3 Direction of the unit vector, ¥, on the fatigue fracture plane determined by the rean position
of one of two planes on which the maximum shear stress 7,(f) acts
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According to Fig. 3 unit vectors 7 and s can be written in the following way

] + f }'ﬁl + ?ﬁ3 : nl + n3
+ k 4
Y ] V2 TR @
- fl—!; - oWy — Wy -, Ay — s g
= i + + k 5
SRRV R vz ! V2 2

Normal stress g, (¢) in direction 7 and the stress 7,,(¢ }, in direction § perpendicu-
lar to 7, are equal to

oy = LY g oy Bty LAY G )
+ (fl + L) 0fy + rig)og (1) + (L + BY(Ay + Az)oe(t)
+ (i, + i) (A + As)og(t) (6)
Similarly
NGRSl BN S PR PR S PO
+ (rlml - 3'”3)01():(0 + ([lﬁl - 3”3)sz(1)
+ (hfy — 1higia)oy,(f) )]

In the case of a general position of the fatigue fracture plane (Fig. 4) directions
of vectors 71 and § can be written with the mean direction cosines &y, &,; and B,

0, 1)

Fig 4 Directions of vectors, # and 7, and of stresses, 0,(f}, 74(f), in the case of any position of the
fatigue fracture plane in relation to the system of axes v, y, z
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st (i,j=x,y, z) in rclation to the constant system of axes x, y, zin the following
way

A= Gl + Qngf + Gpk (8)

5 = ﬁsxi" + 5syj-+ I?SZ.E (9)
whereupon the criterion expressed by equation (1) has the following form

{Bﬁsiﬁsjoij (1) + Kanbnog!) naxe = F (10)

Some particular cases of the generalized criterion

A choice of constants, B, K, and F, together with an assumed position of the
fatigue fracture plane, leads to particular forms of equation (1). Three special
cases are considered here.

(A) For B=0,K =1, F = g,, i.e., the fatigue limit under uniaxial
sinusoidal tension-compression, and with the assumption that the fatigue
fracture plane is perpendicular to the mean direction of the maximum normal
stress, g;(r), we obtain

{Gn(t)}max,t = Uy (11)

i.e., the criterion of the maximum normal stress on the fracture plane (8)-
(9)(10). It should be noted that equation (3) is included into the criterion
expressed by equation (11). In order to show that in a particular case equation
(11) is reduced to the classical criterion of the maximum normal stress for
sinusoidal loading (2)(4)

Oa = Uaz (12)

it is sufficient to assume that the normal stress having the maximum amplitude
acts along the axis, x, i.e., 0,(t) = 0,y sin @t and that /; = 1. Then, according
to equations (3) and (11) we obtain

{an(f)}max,l = {aal sin w’}max,t =0y = Uy

(B) ForB=2 K=0,F=g,(orB=1,K=0, F=(0,,)/2) and with the
assumption that the fatigue fracture plane is determined by the mean position
of one of two planes on which the maximum shear stress 7, (¢} acts, we obtain

{Zrns(t)}max,l = Oy (13)

i.e., the criterion of the maximum shear stress on the fracture plane and the
criterion of strain energy of distortion in the direction of the maximum shear
stress on the fracture plane (8)—(10). These criteria have the same mathematical
form.

In the particular case of sinusoidal loading when the normal stress has the
maximum amplitude acting along the x axis and the normal stress with the
minimum amplitude acting along the z axis, i.e.

Oul{t) = oy sin wt, 0,(t) = 0, sin wt
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and when

[ =n=1
then, according to equations (7) and (13) we obtain

{22051 Y maxy = {Ga1 SIN OF — Tg3 SIN F gy = Ga — O3 = Oy (14)
In such a way the classical criterion of the maximum shear stresses for
sinusoidal loading is obtained (2)(4).
(O) For B = 1 we obtain

{Tns(t) + Kon(t)}max,£ = F (15)

i.e., the criterion of the maximum shear and normal stresses on the fracture

plane (8)-(10). From equation (15) some other criteria for sinusoidal loading

result. For example, taking

2ty
0&2

T,(1) = T sin @, G,(t) = Oy sin wf, K = -1, F=1,

(fatigue limit under sinusoidal torsion) we obtain

{Tan sin wf + (—233?— - 1)03,1 SIN ! }pagy = Tan T (%Ezz_ - l)aan (16a)

az az

or, after transformation

h+(2—£&£)%=1 (16b)
aaz Taz oaz

Thus we obtained the criterion formulated by Matake (13). He assumed that
the fracture plane is the plane where the shear stress having the maximum
amplitude, 7,;, acts. The Stanfield criterion is also obtained when the same
fracture plane is assumed (14). Equation (16) can be reduced, after transform-
ation to the ‘ellipse arc’ criterion formulated by Gough (15). After substituting

2
Thll) = [\/{(%3) + ri} sin 29] sin wt = T,, sin ot
a, o\ | 2 . ,
g, (t) = ) + > + 72} cos 26 | sin wt = 0,, sin w!

K=k F= GT (k+ V({1 + k) = 7,V + k%)

into equation (15) we obtain the relationship formulated by Findley ef al. (16)
and Stulen and Cummings (17). They assumed that the normal of the critical
shear plane (fracture plane) 71 formed an angle 8 with the direction of the
normal stress having the maximum amplitude o,;, and also that a coefficient k
can be calculated from

[ I8 2

r—azm T+ WA ¥ 5 or tan 28 = 1/k
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Limitations of other criteria
In papers (8) and (9) it has been shown analytically that scalar quantities of:

(i) total specific strain energy;

(i) specific strain energy of distortion;
(iif) octahedral normal and shear stresses;
(iv) modulus of shear stress;

cannot determine fatigue fracture under multiaxial random loading when the
directions of the principal stresses change.

It is worth investigating if the known criteria for multiaxial sinusoidal
loading, based on quantities different from those mentioned above, can be
generalized for random loading,

Comments on the Gough—Pollard criterion

The empirical ‘ellipse quadrant’ criterion for elasto-plastic materials

Gﬂ 4 TE +
(%) *(rﬂ) =1 (17)

where o, and 7, are amplitudes of the normal and shear stresses, respectively.
This can be generalized for the range of random loading in the following way

[(GZ—(’))Z ’ (yﬂm =1 (18)

where a,() and 7,(f) are random normal and shear stresses, respectively.
These stresses are caused by bending and torsion. Expression (18) can be

useful when bending and torsion are caused by one random force, i.e., when

the equality o,() = ar,(r) occurs; a is a constant factor of proportionality.
McDiarmid (18) rearranged equation (17) and obtained the following form

2
Tgn + (41'-23: - l)agn = ng (19)

az

McDiarmid showed that fatigue fracture is determined by amplitudes of shear
stress, 7,,, and normal stress, o,,, on the plane of the maximum shear stress
with a normal, 7. He thereby showed an interesting physical sense of the
Gough-Pollard criterion.

After rearranging, equation (19) can be written in the following way

ol o’
4 — Faz 2 + az 2 —
\/{( tzz Oan 4f§z_ — ng Tan Oaz (20)

It follows that

[\/{(4 - S—%)(oﬁ(o + 4—#"1—02 rﬁs(r))” = Ou GO
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where o,(t) is a random normal stress on a fracture plane — equation (6) —and
7,,(t) is a random shear stress in the mean direction, ¥, of the maximum shear
stress on the plane — equation (7) — and the fracture plane is determined by the
mean position of one of two planes of the maximum shear stress 7,(¢) (Fig. 3).
Hence, equation (20) can be a generalization for random loading.

A reduced stress g,.4(f) can be calculated according to equation (21). For this
purpose let us compare the stochastic processes of fatigue strength, W(t),
under a triaxial stress state with that of the uniaxial state at any time, t. Let us
denote a stress under the uniaxial stress state by o..4(t) = 0.(f) and let us
assume that under this stress state /; = 1. According to equations (6), (7), and
(21) a stochastic process of fatigue strength, under a uniaxial stress state, is
equal to

) = (4 - % || towor? + gy o)) = o)

Thus

o) = |4 = % )i + o oo @

From equation (22) it appears that g,.4(f) depends on the components of the
stress state 0;;(¢), (i, j = x, y, z) in a non-linear way. It means that when a
random tensor has a probability density distribution of a normal type, then the
uniaxial process of the reduced stress has a probability density function
different from the one of the normal type. But from the physical point of view
the main fault is the fact that in the process g.q4(f), a mean component is
different from 0 (6,.q # 0), although all the mean components of random tensor
components are equal to 0 (&; = 0). This is a reason why it is not possible to
assume equation (22) when calculating the fatigue life of materials. From this
fact it also appears that any attempt to generalize the Gough-Pollard criterion
for multiaxial random loading is difficult from the theoretical point of view.

Comments on the criterion of a siress state vector

This criterion was formulated and verified by Findley (2). He assumed that
fatigue fracture was determined by the amplitude of a stress state vector equal
to a vector sum of amplitudes of the three normal stresses (the principal stress)
01> Oa2, 03- This criterion has the following form

\/(031 + 0&2 + 053) = Uy (23)

Findley did not attribute any physical reality to his criterion; in his opinion it
was no worse than other empirical criteria.
It is necessary to state that the amplitude of the total octahedral stress

Uac,ocl = \/(G%ocl + riocl) == 1/.\/3\/(021 + Gi? + 053) (24)
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where g0, and 7,0 are the amplitudes of octahedral normal and shear stress,
respectively

Taget = 1/3(0’al + 0y + 0,3)

and

il

13V {04 — 02)* + (00 — 00)* + (041 — 0.3)%}

Thus the value of 0, is equal to 0.58 of the amplitude of the stress state
vector. It also appears that fatigue fracture is determined by the amplitude of
the total octahedral stress, 0, o, and, if so, a criterion formulated on this basis
is the same as equation (23).

This criterion has the same physical sense as, for example, the criterion of the
maximum shear stresses and it should be catled the total octahedrat stress
criterion. As mentioned above, scalar quantities of octahedral normal and
shear stresses are not suitable for formulating a criterion for multiaxial random
loading when the directions of the principal stresses change.

Taoct

Conunents on McDiarmid’s criterion

The idea expressed in McDiarmid’s criterion (18), namely

o + Kot = F (25)
where
o Faz — (032/2) Oy
K W for 1< T < 2
y o= 32
Fe=r,

isabasis for the following proposal of a criterion for multiaxial random loading
{zas(t) + Kg;(r)}max,l =F (26)

Equation (26) was cited in papers (8)}-(10). Its sense is the same as in the case
of equation (1}. An attempt to use the criterion given by equation (26) for
evaluating fatigue life shows that, for r = 3/2, imaginary values of ¢,q(r) are
obtained and, hence, it is not suitable from the physical point of view.
Calculating o,.4(f) we also obtain

1 Orea(t) | w2
Ec71'cd(!) + K '_"Eez_ = ns({) + Kon (t) (27)
Thus g,.4(t) becomes unreal when g, (¢) < 0,

Conclusions

(1) From a generalized criterion involving the maximum shear and normal
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stresses on a fracture plane, three particularly well known fatigue criteria
result for multiaxial random loading.
For particular cases, the generalized criterion coincides with:
(i) the maximum principal stress criterion;
(ii) the maximum shear stress criterion;
(iii) the criteria formulated by Stanfield, Matake, Findley ef al. and
Stulen and Cummings.
Formal limitations preclude a generalization for random loading of:
(i) the ‘ellipse quadrant’ criterion according to Gough-Pollard,;
(i) the criterion of a stress-state vector proposed by Findley;
(iii) the McDiarmid criterion.
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