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ABSTRACT An experimental study of Mode [ fatigue crack growth under complex biaxial
loading has been carried out over a wide range of cyclic stress levels and waveforms at room
temperature. A simple approach is proposed for correlating crack propagation rate. The results
emphasize the contribution of plasticity to fatigue crack growth and indicate a relationship
between uniaxial fracture mechanics parameters, and the biaxial crack propagation rate.

Introduction

Many engineering structures and machine parts are subjected to repeated
loadings, which may lead to their failure due to fatigue. It is frequently
recognized that, for most in-service structures and components, the stressing
system is not a simple uniaxial one. Biaxial and triaxial stress states can often
exist, where the components of stress may be either in-phase or out-of-phase
with one another.

Multiaxial fatigue has been studied for a number of years and the results of
experimental and theoretical work have been related to many criteria. Atten-
tion is drawn to reviews by Brown and Miller (1) and Garud (2). These two
reviews deal mainly with proportional loading, but non-proportional (i.e.,
out-of-phase) loading is also of significance because of the not infrequent
necessity of designing against fatigue under such situations. Non-proportional
loading experiments can also assist our basic understanding of crack extension
processes. Presently, experimental data from non-proportional loading tests
are very limited and are briefly reviewed elsewhere (3)(4).

In order to obtain fundamental information on crack propagation behaviour,
an experimental room temperature study of Mode I fatigue crack growth has
been carried out using complex biaxial stress waveforms over a wide range of
cyclic stress levels. The results emphasize the importance of plasticity in fatigue
crack growth and indicate a good correlation between elastic—plastic fracture
mechanics parameters and the crack propagation rate.
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Notation

A Constant

a Half crack length

o, g Initial and final crack lengths respectively.
c Constant

E Young’s modulus

F Stress intensity geometry factor
J Contourintegral

K Stress intensity factor

m,n Constants

N Numnber of cycles to failure

R Stress ratio O, /0yax

W Half specimen width

W, W,, W, Elastic, plasticand total strain energy densities, respectively
oy Cartesian coordinates

X Modified strain encrgy density function

a Strain hardening exponent

A Range

J(CTOD}  Crack tip opening displacement

Ear Epy &1 Elastic, plastic, and total strains, respectively
Ratio of stress amplitudes (o,/a))

v Poisson’sratio

o Normal stress

01,0, 0 Principal stresses (0, = v, = 03)

fo Flowstress

ay Yieldstress

a, von Mises type stress

fo Effective stress

] Phase difference

Elastic-plastic parameters for uniaxial Mode I crack growth

Linear elastic-fracture mechanics (LEFM) has been used to correlate fatigue
crack growth rate for several years. The stress intensity factor, K, has com-
monly been accepted for describing crack growth under small scale yielding
(SSY) conditions. However, the strict SSY limitations are exceeded when
stress levels approach general yielding. Thus a number of alternative fracture
mechanics parameters have been proposed for studying crack growth at high
stress levels, some common examples being AJ, the cyclic contour integral
(5)(6), the crack-tip opening displacement (7), and the cyclic plastic zone size
(8); all three of which are reviewed in reference (9).

Cai (10) has used an expression for uniaxial stress cycling based on the
monotonic stress-strain relationship and which can be expressed as

P =72nF% [ ode )
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where F is a geometric factor which under LEFM conditions is equivalent to

Kl/{o\/(na)}.

In this paper the term P is used instead of J since the latter term is essentially
a non-linear elastic parameter, while P is a more general elastic—plastic
parameter. It follows that when calculating [ o de in equation (1), both the
linear elastic and the power-law hardening plastic components may be
evaluated separately, and then combined to give the more general elastic—
plastic Ramberg-Osgood type of stress-strain behaviour, The stable cyclic
stress—strain curve generally deviates smoothly from the elastic line, so that an
equation of the following form usually fits the data

a a Ve
elx£e+£p=1—5,—+(E) (2)

Figure 1 illustrates the quantities &, &, &p, and o.

¥

Fig 1 Hysteresis loop for fully reversed loading: (a) defining cyclic stress strain curve; (h) defining
components of strain energy
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Re-arranging the second term of equation (2), one obtains the power law
hardening equation

o= Aej (3)

In the case of fatigue loading, a cyclic term AP can be evaluated by
considering the elastic and plastic components
Ae
AP = AP, + AP, = 2nF’a I o' de’ @)
0
where ¢’ and ¢’ are defined in Fig. 1(b).

For simplicity, the stable hysteresis loop has been defined by the cyclic
stress—strain curve, although this curve does not necessarily provide complete
information about the shape of the hysteresis loop. Dowling (11) showed that
agreement between the stabilized hysteresis loop traces and the expanded
cyclic stress—strain curve was almost perfect for the one example of 2024-T4
aluminium, but such behaviour can also be observed in a range of materials,
though not in every case (12). From a knowledge of the hysteresis loop shape,
expressions can be derived for the energy absorbed per cycle per unit volume
of material (see Appendix 1).

In equation (4) the integral [ ¢’ de’ should be evaluated only over the period
of the cycle where the crack is open. For fully reversed load cycling (R = —1),
see Fig. 1(a), the crack opening load should lie between the point of load
reversal and zero load (9) for plane strain conditions, hence the value of AP
should lie between the following two terms (see Appendix 1)

AP, = 2nF%a{W, + Wo,IC1 — a)} (%)
and
APy = 2xF%a(W, + 2W,)/4 (6)

although AP will probably be closer to APy (9).

For repeated loading (R = 0) and plane strain conditions, there appears to be
no significant crack closure. In experiments at high stress levels (9) oxide was
unable to build up due to the fast crack propagation rate for the case of a
stainless steel. The effect of surface roughness was also assessed by examination
in the scanning electron microscope to show that roughness-induced closure
was negligible. Therefore, one may take

AP¢ = 27F%a{W, + W,/(1 - a)} )

for this loading mode.

Based on the strip yield model of crack tip plasticity, Tomkins (7) has
extended the CTOD approach to fatigue crack propagation to include the
plastic strain range contribution. For a crack loaded in tension, in an infinite
plate, the CTOD is given by
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ro? noAe,

= +
8 2GTE “ O'T(l + CL') a (8)

for small values of a and o/or < 0.5. Equation (8) may be rephrased in terms of
the elastic and plastic energy components, to give

6= ’;—fr‘ (W, + 2W,/(1 — a)}/4 (9)

Now ¢ is proportional to the non-linear elastic parameter J which is frequently
identified as being equal to rmo,d. This can be translated to

APp = moro
maa{W, + 2W,/(1 — a)}/4 (10)
where m is usually taken to be equal to 2.

Comparison of equations (5), (6), (7), and (10) shows that AP may always be
represented by an equation of the general form

AP = 2xF’a(W, + DW,)B (11)

1l

where D and B are constants. Irrespective of the assumptions made concerning
crack closure, the value of D does not vary by more than a factor of 2, since

V(1 - a)=D =2/ - a) (12)

Other examples of values for D may be found in the literature (5)(6). An
important three-dimensional example is the thumbnail crack initiated on the
surface of a uniaxially loaded low cycle fatigue specimen (6) where, for the case
of no crack closure

APg = 3.2a{W, + 1.56W,/(1 — a)} (13)

which also conforms with equations (11) and (12).

Parameters for biaxial cyclic stress state

The concept of an equivalent stress is frequently applied to the analysis of
biaxial and multiaxial loading situations, and for most metallic materials the
von Mises and Tresca criteria are widely used for computing the extent of
plasticity.

For an equibiaxial stress of magnitude o (o, = 0;, 03 = 0) the equivalent von
Mises stress is given by

o, =V{(o1— 0) + (0= a3)  + (03— o)} V2 =0 (14)

while for a uniaxial stress of the same magnitude, g, is also equal to the applied
stress 0. However, itis known that a direct stress applied on a plane perpendicu-
lar to a crack will influence crack tip plasticity (13), whereas the von Mises
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criterion is only used for an uncracked isotropic material. When material
contains a defect or crack, it will exhibit ‘anisotropic’ behaviour, in so far that
the effect of ), the stress normal to the crack, will be different under biaxially
loaded systems than that predicted by the von Mises criterion.

It is, therefore, proposed that a fatigue crack growth correlation for the
biaxial stress case should incorporate a biaxial stress function that depends on
both plastic flow and the stress normal to the crack. Since biaxial constraints
develop stresses proportional to Poisson’s ratio, », the function required should
also depend on v. This can be seen in the Tomkins crack propagation theory (7),
where the essential ingredients are the stress, which determines the extent of
crack tip plasticity, and the strain range normal to the crack. The normal strain
for elastic conditions is

1
g = i (g; = vay, — voa) (15)

In an attempt to derive an empirical formula for a fatigue effective stress,
equations (14) and (15) need to be reconsidered by employing a term such as

O = V{(01 = v02)* + (0 — vou)* + (vo, — vay)*}V2 (16)

in which o, and @, are modified by the elastic Poisson’s ratio. Here o,y is an
effective stress equivalent to the special case of uniaxial loading normal to the
crack. Note equation (16) can only be used for fatigue in which it is required to
combine aspects of plastic deformation and fracture mechanics.

For uniaxial loading, o, is equal to o, only if the stress is perpendicular to the
crack. For equibiaxial loads

Oegp = U\/(i - -+ 1’2) (17)
and for pure shear
Tepp = U\/(l + r+ 1’2) (18)

When there is a phase difference ¢ between o, and o,, then for a sinusoidal
waveform

o, = o sin (wt) (19)
and
0y = Ao sin (w1 + @) (20)
whence
Ut = oV {sin? (wr) — vA sin (@t) sin (wf + ¢) + v*2% sin® (ot + qb)}( )
21

The effective siress for crack propagation in a cycle is the maximum value
obtained from equation (21).
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For comparative purposes, it is noted that the elastic parameter AJ is widely
used for uniaxial fatigue tests to correlate crack growth rate da/dN under cyclic
plasticity conditions. For biaxial loading, a simple formula for the AJ integral
has not yet been derived. However, we may use the uniaxial form of the AP
approach and the effective stress Ao, to study biaxial stress cases. Thus, a new
parameter is proposed, i.e.

AP = 2nF%(X, + DX,)B (22)
where D and B are constants given by equation (11), and
Xe = AOEff/ZE

. @)
Xp = ZAUe"(AUeﬁjzA) a(l = C{)/(l + a)

where Ao,y is derived from equation (21), and A and « are taken from the
uniaxial cyclic stress—strain curve.
Clearly, X, and X, are equal to W, and W, for the uniaxial test only.

Experimental procedure

All tests were conducted on AIST 316 austenitic stainless steel taken from one
heat. The tensile properties of the material at room temperature are 0.2 per
cent proof stress 395 MPa, tensile strength 611 MPa, reduction in area 71 per
cent, elongation 57 per cent, Young’s modulus of elasticity 198 GPa, and
Poisson’s ratio 0.29, for the chemical composition (% wt) of 0.06 C, 1.88 Mn,
0.023 P, 0.020 S, 0.62 Si, 17.30 Cr, 13.40Ni, 2.34 Mo, balance Fe. The material
was solution treated at 1070°C and water quenched to give a grain diameter of
52 pm.

Fatigue tests were performed on a Mayes servo-hydraulic biaxial test facility.
A tensile/compressive load could be applied to each pair of arms of a cruciform
specimen (Fig. 2), thereby developing a biaxial stress field in the working
section. Full details of the testing system and specimen design are given in
reference (14).

The load waveforms used were triangular and all the details of the stress
levels, and specimen numbers associated with a particular waveform, are given
in Fig. 3; here oy is the applied stress normal to the mode I fatigue crack, and o,
the stress parallel to the crack. Crack length measurements were obtained by a
d.c. potential drop method and a travelling microscope. The crack length data
measured by both methods were the same. Crack growth rates were determined
by a least squares fit of a parabola to groups of five crack length readings
differentiated to give the crack extension per cycle.

The strains were monitored continuously with two extensometers, for the y
axis and x axis, respectively, and the cyclic stress strain hysteresis loops were
recorded at intervals (Fig. 4). Here the y axis was normal to the crack plane.
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Fig 2 Blaxial fatigue specimen geometry

20,/ MPy; SPECIMEN NUMBER
560 | P15 | P25 - P45 | PSS P65 | P75
386 | P13 | P23 P33 P43 — P63 | P73

193 P11 P21 P31 - — — —
64 P10 P20 P30 — - — —

Fig 3 Biaxial load waveforms and stress ranges



FATIGUE CRACK PROPAGATION UNDER COMPLEX BIAXIAL STRESS CYCLING 595

X - OXis y-axis

P15
strain

stress

P25

)
/

T

P

AN

Fig 4 Observed hysteresis loops for tests at 560 MPa sfress range in 316 stainless steel

Experimental results

The crack extension resuits are presented in Fig. 5 in terms of crack growth rate
plotted against K, where

AK = AoV {na sec (mal2w)} (24)

and Ao is the stress range normal to the crack, including the compressive
portion. The width of the specimen, 2w = [01.9mm, has been modified to allow
for stiffening of the edges, which affects the K calibration (14). Aithough
LEFM analyses are not strictly applicable, equation (24) is used only as a
convenient parameter in plotting the results at high stresses, since it provides a
suitable correlation factor for the effects of finite plate width.

At a stress level of Ag = 560 MPa (Fig. 5(a)), specimen P15 subjected to
uniaxial loading showed a faster crack growth rate than out-of-phase biaxial
specimens P45 and P55 by a factor of approximately 5 and 10, respectively.
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Fig 5 Crack propagation rate as a function of the parameter AK (equation (24)), for: (a) Ao =
560 MPa; (b) Ao = 386 MPa; (c) Ao =193 MPa; (d) Ao = 64 MPa

Results for a 90 degree phase difference in equal stress level loaded specimens
P75 and P65 were similarly displaced in relation to the uniaxial loading data,
i.e., comparable to the results of specimens P45 and P55, respectively. Tests on
specimens P55 and P65 (¢ = +m1/2) gave very close results to that for the
equibiaxial loaded specimen P25,

For a stress level of Ac = 386 MPa (Fig. 5(b)), the shear crack gave the fastest
crack growth rate (P33), and the results for a 90 degree phase difference
(specimens P63 and P73), equibiaxial loading (specimen P23) and out-of-phase
biaxial loading (specimen P43) were of a similar nature.



FATIGUE CRACK PROPAGATION UNDER COMPLEX BIAXIAL STRESS CYCLING 597
Analysis

From Fig. 5 it is observed that crack growth rates increased as the stress level
increased, and so the elastic stress intensity factor K cannot correlate those tests
at the highest stress levels for which elastic—plastic conditions are more
relevant. It is therefore important to consider whether or not crack growth rates
for all biaxial loadings may be predicted by a single theory. The linear elastic
stress intensity factor is normally only applied to cases of limited elastic
deformation and will not be discussed further in this paper.

Garud (15) has used the plastic work per cycle as a measure of damage. It was
apparent, however, that the plastic work approach could only be used at high
stresses, since at low stress the results appear to diverge (4). Indeed, at low
stress levels the cyclic stress—strain hysteresis loop will become the elastic line
and the plastic work per cycle will be zero, although cracks may still propagate.
As mentioned previously, in considering AP both the elastic and the plastic
strain energy components contribute to crack growth, whereas the hysteresis
loop area is only a measure of the plastic work component which will dominate
only if Ag, > Ae, as was the case for Garud’s data (15).

Andrews (16) collected data to obtain an in-phase biaxial cyclic stress—strain
curve for a 316 type stainless steel (see Fig. 6), which can be described as

T = 1161(0.5ym0)"¥6  MPa (25)

For 90 degree out-of-phase loading, Lamba and Sidebottom (17) indicated
that the peak normal stress resulting from out-of-phase hardening of OFHC
copper was considerably higher than that for uniaxial cycling, as was also
observed by Andrews (16). From these results we obtain for the present tests

o = 1995¢%3%  MPa
or for Ag < 600 MPa
Ao = 119013.53'144 MPa (20)
for in-phase loading, and
o = 2523£93 MPa
or for Ao < 600 MPa
Ao = 1574&92’”4 MPa 27

The results of all the crack growth experiments in Fig. 5 are assessed in Fig. 7
in terms of AP, the elastic—plastic parameter defined by equation (22). The
values of X, and X are listed in Table 1 for each case. The plastic term X, was
obtained using equation (26) for proportional loading, but equation (27) where
non-proportional cycling was employed. The geometry factor F is given in
equation (24). The parameters D and B were taken from A Py (equation (6)) for
fully reversed cycling to allow for crack closure, but for repeated tension
(R = 0) AP.was employed. Three points only are plotted for each test, to avoid
undue emphasis being placed on any one experiment.
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Fig 6 DBiaxial cyclic stress strain curve for 316 stainless steel
Discussion

It is found that AP provides some correlation in Fig. 7 for all the crack growth
results under complex biaxial loadings. The points for uniaxial and shear loads
fall on parallel straight lines, except for Ac = 64 MPa, irrespective of stress
level, but the results of equibiaxial load tests show some scatter (although
within a factor of +3) when compared with the uniaxial test. All out-of-phase
results fall within this scatter band. However, the scatter band is reduced to a
factor of £2 if the results for Ao = 64 MPa arc ignored. Comparison with Fig, 5
shows that a AK plot gives scatter of 4 orders of magnitude on crack growth
rate, e.g., at AK equal to 150 MPay/m from 107! to less than 10~° mm/cycle over
the stress levels considered here.



FATIGUE CRACK PROPAGATION UNDER COMPLEX BIAXIAL STRESS CYCLING 599

_ 7
102“‘1‘ l ! / ”IN
/
/
/
+3 times on /e
o crack growth rate /
§10'3" Ly _
&
E
wl
2 A¢, MPa
o 4 Symbol
T W0 560]386'193]64 ]
[
g Specimen Number
& o |P15|P13|P11 [P0
é e |P25|P23{P211P20
& 5 x t— |P33|P31iP30} ]
1
e |P5|PL3|— § —
s} P55 |« | — | —
p —_— N
; ¥ 65(P53
/ v |p7SiPT3| — | —
157612 1 +
01 10 10 100 1000

AP N/mm

Fig 7 Correlation of all crack propagation tests by the AP parameter

The data on Fig. 7 for da/dN < 5 X 107® mm/cycle correspond to tests with
Ao = 64 MPa. Therefore, AP was determined from equation (7) since R = 0.
The bad correlation with the tests for fully reversed cycling may be attributed
to the simple assumptions involved in the crack closure analysis presented in
Appendix 1, and to the close proximity to threshold conditions (see Fig. 5(d)).

‘The crack growth rate calculations employed in this approach require the
corresponding cyclic stress—strain curve derived from a smooth specimen test,
This approach may correlate the uniaxial results (when presented in terms of
AP) with the crack growth rates produced under either in-phase or out-of-phase
loads, over a wide range of cyclic stress levels and waveforms at room
temperature, Thus, cyclic deformation response plays an important role in
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Table 1 Loading parameters

Test Frequency 20, Aoy, Ae, X. Xp
No. (Hz) (MPa) (MPa) (x10%) (N/mm?) (N/mm?)
P15 0.10 560 560 53.3 0.792 2.240
P25 0.10 560 499 23.9 0.629 0.892
P45 0.10 560 560 7.64 0.792 0.320
P55 0.10 560 560 7.64 0.792 0.320
P65 0.10 560 560 7.64 0.792 0.320
P75 0.10 560 560 7.64 0.792 0.320
P13 5.2 383 383 3.81 0.370 0.109
P23 0.94 387.9 345.7 1.87 0.302 0.0484
P33 0.93 385.7 454.7 12.6 0.522 0.426
P43 0.51 383 383 0 0.370 0

P63 0.53 383 383 0 0.370 0

P73 0.52 383 383 0 0.370 0

P11 10 193 193 0 0.094 0

P21 7 191.3 170.5 0 0.073 0

P31 4.1 195.2 230 0 0.134 0

P10 20 66.6 66.6 0 0.011 0

P20 20 62.7 55.9 0 0.0079 0

P30 20 63.1 74.4 0 0.014 0

controlling fatigue crack extension which cannot be ignored in fracture
mechanics analyses.

The lack of correlation at low stress range shows that the AP correlation
parameter needs further developments as do other crack propagation models,
for non-proportional loading situations. Note that AP fails to conform with
LEFM analyses at low stresses and the methods of assessing crack closure could
clearly be improved.

Conclusions

(1) A new parameter, AP, is proposed for correlating Mode I fatigue crack
growth rate for elastic-plastic situations of biaxial stress at both low and
high stress levels.

(2) 'This approach may be applied to both in-phase and out-of-phase biaxial
stress cycling if the corresponding cyclic stress—strain curve is used.

(3) The parameter AP may be related to the cyclic range of the J integral for
uniaxial loading only.
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Appendix 1 Derivation of expressions for AP
Fully reversed loading with no closure

For the hysteresis loop depicted in Fig. 1, by using the displaced axes o'¢’, the
total area under the stress—strain curve is given by

Ae
WA=WC+WP+WS=J o' de'
0

For the assumed hysteresis loop shape

¢’ = d'lE + 2(a'RA)V
hence

de’ = do'/E + (o'R2A)"* ! do'lAa
Integrating between limits of 0 to Ao for o'

W, = AGY2E + 2A0(Aa2A) /(1 + a) = A0’R2E + Aole, /(1 + a)
where

W, = Ad*2E

Wt Wy = Ao-Ae,/(1 + a)

From equation (4), a value of AP may be derived

AP, = 2nF%a(W, + W, + W) (28)

Fully reversed loading with closure at zero stress
If the crack is assumed to open at zero load, AP can be estimated from the upper
half of the hysteresis loop in Fig. 1. Thus the area under the loop

Ag
Wg = J (o' — Ac/2) de’

Ao
= I (¢! — Aal2)(do'/E + (¢0'[2A)Y*"! do’/Aa)
Aagl2

= A0Y8E + Ac-Ae,{(1 — a) + af2"*}/{2(1 + a)}

The term «/2""* may be neglected since for most engineering metals 0.1 < a =
0.2 so that

0.00011 = a/{2"*(1 — «)} = 0.0078
Thus

Wy = AG*BE + AoAe,(1 — a)/{2(1 + @)}
and in Fig. 1
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W, = Ao-Ag,(1 — a)/(1 + a)

From equation (4), a value of AP may be derived

APy = 27F%a(W, + 2W,)/4 (6)
which may be compared to the previous solution, written as

APA = 2nF%a{W, + W,/(1 — )} (5)
since

Ws = AoAeyal(1 + a)

Repeated load cycling with no closure (R = 0)

If any strain ratchetting effects can be neglected, the solution in this case will
correspond to AP, , noting that no shift will arise between the axes o, e and o’
¢'inFig. 1.
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