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ABSTRACT A method for estimating multiaxial elastic—plastic notch stresses and strains is
presented and summarized in a solution scheme for routine application.

The method assumes proportional loading and is based on known approximation formulae,
Hencky's equations, and notch element boundary conditions.

Application is illustrated by the example of a notched shaft under bending and torsional
loading.

Infroduction

In the last two decades a concept for crack initiation life prediction has gained
importance namely one based on the assessment of the stress—strain path at the
most stressed volume element of the structure under consideration (1-4). This
concept — called the local strain approach — requires only a little experimental
data, namely the cyclic stress—strain curve and the strain versus life curve, both
obtained from smooth specimen tests. Hence, fatigue life predictions can be
employed in the design stage.

Although some papers have recently been published dealing with multiaxial
fatigue of notched components (e.g. (5)—(11)), the local strain approach for
multiaxial situations is not yet a routine application. Besides selecting a suitable
multiaxial fatigue theory, one reason is the lack of an easy to handle yet still
sufficiently accurate procedure for determining the local elastic—plastic stresses
and strains.

The finite element method is a powerful instrument but employment of this
method for nonlinear problems is an exception, since large computer capacity
and highly specialized engineers are required.

An analysis of approximation formulae proposed in the literature (1)(5)—(9)
for multiaxially stressed notches shows that these methods follow a unique
scheme based on reference (12).

(i) Stresses and strains which cause failure (e.g., equivalent stress and strain
or maximum stress and strain).

(i) An approximation formula (e.g.. Neuber formula) to relate external
load with notch stresses and strains causing failure.
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(iii) A yield criterion (e.g., von Mises or Tresca).
(iv) Additional assumptions (e.g., special loading cases).

Because of the particular assumptions associated with each of these items, a
general application of these methods seems impossible. Consequently, as no
consensus presently exists as to the most appropriate multiaxial fatigue theory,
the use of a particular damage rule leads to restrictions.

In this paper a generalized method for estimating multiaxial elastic-plastic
notch stresses and strains for components under proportional loading is
presented and iliustrated by the example of a notched shaft under bending and
torsional loading. The procedure is constructed in a modular manner, Com-
plete information is presented about the multiaxial stress and strain state at the
notch (given in terms of all stress and strain components) enabling the
employment of different or best-suited damage criteria.

Notation
B Bending moment
E Young’s modulus
K’ Strength coefficient
Kiq Equivalent stress concentration factor
Nominal stress
S* Modified nominal stress
T Torque
a Stressratio o,/0;
ex Modified nominal strain
n' Hardening exponent
o Principal stress direction
Y Shear strain
£ Strain
de Strain increment
£q Equivalent strain
¥ Poisson’s ratio
v Variable Poisson’s ratio
a Stress
do Stressincrement
J.,Tn Netsection stresses
o Equivalentstress
Oy Yield stress
o=g(e) Stress-strainrelationship
T Shear stress
Subscripis

1,2,3 Principal stresses, strains
e Elastic quantities
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q Equivalent quantities
P Value related to the plasticlimit load

Main features of the approximate solution

The proposed method for estimating multiaxial elastic—plastic notch stresses
and strains is based on the following conditions.

(i) Knowledge of the complete state of elastic notch stresses.
(ii) External loads are proportional in combined loading.
(iii) Asin the case of uniaxial notch stresses, cyclic loading can be reduced to
a sequence of monotonic loadings by taking ‘Masing-" (doubled cyclic
stress—strain curve) and ‘Memory-behaviour’ into account.

Justification of the latter point is illustrated in Fig. 1 where two ways are
followed for determining the maximum principal strain of a notched round bar
under combined tensile and torsional loading (S : nominal stress &,: maximum
principal notch strain). First, the complete load sequence was followed by the
finite element method using kinematic hardening. In the second solution only
a finite element analysis for monotonic loading was carried out. The load-strain
path was constructed using ‘Masing-’ and ‘Memory-behaviour’ from the load
reversal to the prior load reversal point, leading to nearly the same results as
with the cyclic finite element solution. A more detailed description of the
analysis is given in (13).
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Fig 1 Applied nominal stress versus maximum strain curve for a notched round bar under
combined tensile and torsional loading
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Fig 2 Structure of the approximate solution

Knowing that multiaxially stressed components under external proportional
loading show ‘Masing-’ and ‘Memory-behaviour’ makes it a lot easier to find
approximate solutions, as only monotonic loading has to be considered.

The structure of the proposed approximate procedure is depicted in Fig. 2.
The following input is required.

(i) Elastic material constants and uniaxial stress—strain curve.

(ii) Elastic stress state at the notch, e.g., described by the three principal
stresses oy and the three principal stress directions «,; (subscript e
denotes elastic quantities, i = 1, 2, 3).

(iif)  Plastic limit load level S, for elastic-perfectly-plastic material.

The approximate solution consists of two steps. First, a relationship between
applied load and equivalent notch stresses and strains is established. The
known approximation formulas (5)(14)-(19) valid for uniaxially stressed
notchesare extended to multiaxial stress states by introducing a yield criterion.

In the second step, the principal stresses and strains at the notch root are
correlated to the equivalent quantities o4 and &, obtained from the first step.
This correlation is established by a flow rule describing the plastic deformation
of a multiaxially stressed material element.

In general, five boundary conditions of the notch element have to be known.
The modular structure of the approximate procedure, therefore, consists of an
approximation formula, a flow criterion, a flow rule, and, finally, the notch
clement’s boundary conditions, and these derive the specific behaviour result-
ing from loading type, component geometry, and material.
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Description of the approximate solution

A notch at a traction-free surface is now considered (for an example of triaxially
stressed notches see (20). The approximate procedure is presented with fixed
contents of the modules proposed in (21) for routine application; that is:

(i) Neuber’s rule as an approximation formula;
(i) von Mises flow criterion;
(iit) Hencky’s flow rule;
(iv) boundary condition I: fixed principal stress direction;
(v) boundary condition IT: constant ratio ¢,/¢; of the surface strains.

Note that strains g, and ¢; are not ordered according to magnitude, and that
£, & denote surface strains and ; is the strain normal to the notch surface.
Three more boundary conditions, namely ¢y = 0 and two principal stress
directions being fixed, are satisfied automatically. In the following the different
modules are described in detail.

Neuber’s rule for multinxial stress states based on von Mises flow criterion

According to a proposal of Neuber (22)(23) the known approximation formulas
are extended to multiaxial stress states by replacing the uniaxial notch stresses
o, and strains, £, as well as the stress concentration factor, K,, by the
corresponding equivalent quantities gy, &4, and K.

Estimation of the notch equivalent strain £, and stress g, requires knowledge
of:

(i) the material’s uniaxial stress—strain curve
gq = £(&g) (1

(if) the theoretical elastic equivalent notch stress, o, o, which is calculated
using von Mises flow criterion, that is

Oeq = \/(031 — O¢y' 0 + 022) (2)
(iii) and the plastic limit load, S;, for elastic-perfectly-plastic material.

Values of o, , can be expressed in terms of the equivalent stress concentration
factor, Ky, and the corresponding nominal stress, S, or be related to the
applied load, L

Teq = Kig'S = ¢ L {3)
with free definition of § and L and ¢ a constant. Introducing the abbreviation
d, = Uglog {4)

the equivalent stress concentration factor is determined by

Ktq = Uel\/(l -, + (I%)/S (5)
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Neuber’s rule, in its generalized form (17), reads

E-e*
E-oq-eqr(Klq-.S)z-mng-r; Ky S > oy (6)
and
. A : Cres
§* = : - I.Sws 7
ol O (7)

where the term E- e¥/S* takes the nonlinear net section behaviour into account
(24).

For a given stress level, S, the right hand side of equation (6) is determined
by equation (7), and the elastic-plastic notch stresses, o, and strains, £y, can
be calculated by consideration of the material’s stress—strain curve, equation

(1).

Application of Neuber’s rule is independent from the chosen definition of
nominal stress and corresponding stress concentration factor, K, since only the
product K, - S enters equation (6). The value of K, does not have to be derived
explicitly. For exampte, it is sufficient to know the equivalent notch stress, g,
from a single elastic finite element analysis.

In addition to the elastic equivalent notch stress, 0,4, Neuber's rule requires
the knowledge of the plastic limit stress level, §;, (for elastic—perfectly-plastic
material) if notch stresses and strains are to be calculated in the fully plastic
range. It is noted, however, that for elastic nominal strains, E-e*/S* in
equation (6) equals 1, i.e., Neuber’s rule is independent of S,

Note that there are aiways plastic nominal strains for the material law

e = olE + (/K" )" (8)

o

However, in most cases these strains are so small that a rough estimate of §,
is sutficient.

For a routine application of Neuber’s rule it is proposed to estimate the
plastic limit stress, S,, by ¢lementary equilibrium considerations, neglecting
internal triaxiality, e.g., assume a constant normal and shear stress distribution
at the cross section for combined bending and torsional loading, Fig. 3.

Flow rule

The normality rulc, postulating that the vector of the plastic strain increment is
perpendicular to the yield surface (25), represents the starting point for the
formulation of the flow rule. Considering von Mises flow criterion and isotropic
hardening leads to the Prandtl-Reuss equations, representing a differential
stress—strain relationship, which, for example, gives the maximum principal
strain

de; = {doy — v-(do, + do)}/E + {07 — ¥(oy + 03)} - deblo, (9
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Fig 3 - Estimation of plastic limit loads from basic equilibrium considerations

Calculation of the total principal strains requires an incremental solution. A
close integration of these equations is only possible for the special case of
proportional deviatoric stresses where the Prandtl-Reuss equations reduce to
Hencky’s rule representing a generalization of Hooke’s law. As fixed principal
stress directions are assumed (boundary condition I) formulation can be
derived using principal quantities. Furthermore, g; = (0 is taken into account in
the following equations.

&= (0, = v'03) (10)
U‘l
'92=£q'(02_ v'-0y) (11)
Iq
g =—v' 28 (0 + 02) (12)
Oq
v =4-(G-v %q— (13)

Comparative studies have shown (13)(21) that, for the boundary conditions:
fixed principal stress direction and constant ratio of the surface strains, &,/e,
results from Hencky’s rule are nearly identical with the exact solution (Prandtl-
Reuss), although deviatoric stresses behave non-proportionally.
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The Notch element boundary conditions

In general, five boundary conditions have to be known to allow calculation of
the stress and strain components at the notch. Considering a notch at a
traction-free surface, three conditions are given: namely, g; = 0 and two
principal stress directions fixed. The remaining equations are obtained by
statements concerning the third principal stress direction (denoted by a}, and
the geometrical constraint at the notch.

Boundary condition I: fixed principal stress directions

It is assumed that possible changes of principal stress directions can be
neglected. For a lot of structures and loading situations the principal axes are
fixed because of symmetry conditions. Experimental and numerical investi-
gations under combined loadings (see geometry of structures investigated in
Fig. 4) show that, even in the cases considered, there is no rotation of the
principal stress directions for local yielding, and only small changes for general
yielding (21)(26).

It is expected that the assumption of fixed principal axes describes the real
behaviour at the notch root with sufficient accuracy, as long as the external
loads increase proportionaily. However, the modular structure of the approxi-
mate procedure would atlow for changing directions, too. Then, the flow rule is
formulated in stress and strain components (21).

Shatilow smooth Shallow sharp Deep sharp

I -4

p=35mm p=3 p= 3
t =10 mm =10 t =35
R =70 mm R=10 R =70

Fig 4  Structures and loading cases investigated in reference (26)
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Boundary condition IT: constraint at notches

As the elastic surrounding hinders deformation of the plasticized notch root, it
seems reasonable to describe this geometrical constraint by a simple formu-
lation. For example, notch circumferential strains are controlled by the cir-
cumferential strains at the gross area.

Based on experimental and numerical investigations it is assumed that the
ratio of the surface strains, &,/¢, remains constant during loading. The special
case of pure torsional loading (e,/e; = —1) is satisfied exactly.

The constraint assumption should not be applied to structures with extremely
shallow and mild notches, which resemble smooth specimens. For these cases
an assumption concerning a stress ratio is advised in (21).

Caleulation of the stress and strain components
Together with von Mises flow criterion
2 2
04 = V(of — 010, + 0}) (14)

and Hencky’s flow rule, equations (10)-(12), there are four equations for the
five unknown quantities &), £,, €5, 07, and g,. Making use of the boundary
condition I, &,/e; = constant, the set of equations can be sotved

0, _ &leg+ v

= = 201 P 5
“ L] 1+ 1’152/81 (1 )
£y ’ 1+a
Y LI 16
£ Y T= v'a (16)
a :——l—w——o (17)
! V(1 —a+a®) 9

1 —v'a

= -~ rd 1

A0 —a+ah) (18)

Note that boundary condition I, fixed principal stress directions, has already
been employed in the formulation of the flow rule, equations (10)-(12).

Scheme for routine application

The steps required to estimate multiaxial notch stresses and strains are listed
below.

(1) Definition of the material stress—strain curve ¢ = g(e) and selection of von
Mises yield criterion.

(2) Description of the elastic solution by (i) elastic material constants, (ii)
principal stresses g, , 0,; (= @, 0,,), and (iii) principal stress direction.

{3) Estimation of the plastic limit stress, S, for elastic—perfectly-plastic
material based on elementary equilibrium considerations.
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(4) Calculation of the theoretical elastic equivalent notch stress, o, ,, based
on von Mises yield criterion, equation (2). If nominal stress, S, is
preferred as a variable, then calculation of the concentration factor, K
equation (5).

(5} Choice of Neuber’s rule as approximation formulae, equations (6) and
(7). In connection with the material stress—strain curve, equation (1),
calculation of the equivalent notch stresses and strains for a given nominal
stress §.

(6) Notch element boundary conditions:

I: fixed principal stress direction

tq:

¢ = @, = constant (19)
IT: constant strain ratio

Er _ Ly . e — ¥
£ I3 1 —a,

= constant (20)

2]

(7) Calculation of the stress and strain components according to equations
(13) and {15)-(18).

Means for more accurate estimates

Extensive studies concerning the accuracy of the method presented show (21)
that the solution mainly depends on the chosen approximation formula; here,
Neuber's rule.

As Neuber’s rule describes a non-tangential transition from the elastic into
the elastic-plastic regime, it tends to overestimate notch strains (18)(27). This
is especially true for low hardening materials. Thercfore, employment of a
formula proposed by Seeger (17)(27) (with tangential transition} is advised for
low hardening materials, and if highly accurate notch stresses and strains are
wanted for small plastic strains

2 l B3
=9 [ %ea) 2 L L G| E-€T 21
N E g,/ u’ " Cos o, | §* @b
with
7 o lo,— L, _ . _
= ?-wmﬁp—i—i——., K, = K S,/ov, Gy = Kig'$

If the plastic deformation of the cross section is no longer small, the plastic
limit level, S;, should be calculated taking internal triaxiality into account. A
relatively simple procedure is given in (21) enabling sufficiently accurate
estimates of S, by use of the clastic stress distribution.
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Application

Application of the proposed procedure is illustrated by the example of the
notched shaft investigated in a SAE research programme (28)(11). Geometry,
type of loading, and material data are taken from (11).

Notch stress and strain estimates are compared with finite element results for
bending and torsional loading, i.c., loading with one component as well as
combined loading, The elastic—plastic finite clement analyses were carried out
using ADINA (29) with a non-linear material behaviour including von Mises
flow criterion. The stress—strain curve, equation (22), was approximated by
seven straight lines. The finite element mesh used for the combined loading
case is depicted in Fig. 5. For a more detailed description of the finite element
analyses and comparison with analyses published in literature, see reference
(30).

The approximate solutions for the three loading cases have the following in
common.

(i) The material stress—strain law (SAE-1045 steel)
olE + (alK")"™ {22)
202375 MPa, K' = 1283 MPa, n' = 0.211, » = 0.30

&

E

(ii) The theoretical elastic solution is taken from a linear finite element
analysis.

(i} A nominal stress, S, is used as load variable. The equivalent stress at the
notch obtained from common structural analysis, involving a linear
distribution of net stresses, o, 1, is chosen as the nominal stress

S = V(o + 3t1) (23)
where ¢, and 7, represent net stresses for pure bending and torsional
loading

4B 2T
Oy = P Th = oy (24)

Here B is the bending moment at the notch B = V-{, = V-I, + By (see
Fig. 5) and T is the torque. The plastic limit level is estimated by
elementary equilibrium considerations according to Fig. 3 (21), neglect-
ing the influence of shear stresses caused by the vertical force V

16 I + 3(r,/0,)
S == {5 25
»/ov 3 \/{ﬂz + 48(r, /0, ) (25)
The relationship between external loads and nominal stress reads
J. Tt

B= viie + zemmyy S T V{16(BITY + 12) '8

(26)
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Fig 5 Component geomeiry, loading conditions, and the finite element mesh. Dimensions in mm
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Bending

The solution follows the application scheme given previously.

(1) Material stress—strain curve according to equation (22).

(2) Poisson’s ratio, v = 0.30. Elastic analysis for bending gives 0., = a,, =
1.640, and o, = 0.4 = 0.2080,,, where z denotes the longitudinal and ¢
the circumferential direction,

(3) 1.0, = 0inequation (25) leads to S /oy = 1.7.

(4) For pure bending the chosen nominal stress, S, is equal to the net stress
g, The value of K4 is obtained according to equation (5)

K= 1.64-/(1.0 — 0.208 + 0.208%) = 1.50 (5a)
(5) With these values of K, and S,/oy then Neuber’s rule reads
E-e*
E-o-¢e, =2725-§% e (6a)
8% = (.588-5 (7a)

(6) For pure bending the principal stress directions remain fixed. Hence, only
boundary condition 1I has to be introduced as an assumption. From
equation (20)

g _ 0.208 - 0.30

2 m = —0.10 = constant (20d)

(7)  Stress and strain components at the notch are calculated with equations
(13), and (15)-(18).

The load versus equivalent strain curves calculated by finite element analysis
and Neuber’s rules are depicted in Fig. 6, together with the material law.
Logarithmic axes are used because linear scales over-emphasize high load
levels and suppress the range of small plastic strains, which in most cases is the
range of application.

As mentioned earlier, Neuber’s rule tends to overestimate notch strains. The
deviations increase with higher load levels and maximum deviation amounts to
30 per cent for strains or 10 per cent for loads (see Fig. 6).

The load-strain curves for the principal quantities are depicted in Fig. 7. The
left diagram shows a plot of the nominal stress, S, versus the maximum strain,
£;. Additionaily, in this diagram, the corresponding stress oy is plotted versus
¢;- The complete information about the stress and strain state is given by the
right-hand diagram showing the relationship between nominal stress, with
strain and stress ratios, &,/¢, e1/¢|, and 0,/0, respectively.

Accuracy studies reveal that the differences between finite element analysis
and the approximate solution are mainly caused by the inaccuracy of Neuber’s
rule. Note that the ¢,/e ratio remains nearly constant for the whole loading
range.
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Fig 6 Notched shalf under bending. Equivalenl notch stresses and strains calculated by finite
element analysis and Neuber’s rule

Torsion

Pure torsional loading represents a special multiaxial problem. The complete
stress and strain state is given by a description of shear stress, 7, and shear
strain, y. Therefore, it is reasonable, although slightly different from the
proposed solution scheme, to use shear stress and strain instead of the principal
stresses and strains. Von Mises flow criterion simplifies to

o, = Vi {14b)
The steps of the application scheme are as follows.

(1) Material stress—strain curve according to equation (22).

(2) Elastic analysis givest, = 1.29-7,.

(3) o0,=0inequation (25) leads to §,/ay = 4/3.

(4) For pure torsional loading the chosen nominal stress, S, is egual to § =
V3 -7,. With cquation (5) it follows
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(6)
(7)

element analysis and approximate solution using Neuber’s rule

= V3. 1.29/V3 = 1.29 (5b)

where K, is the same as the classical definition of the stress concentration
factor for torsional loading.

With these values ot K, and 8, /0y Neuber’s rule reads

E-e*
q 1.66-8%. e

§* = 0.75-§ (7b)

™
I

(6b)

There are no assumptions necessary. The boundary conditions a =
constant and £,/¢; = —1 = constant are satisficd exactly.

Witha, = —0, = rand ¢, = ~¢; = y/2, Hencky’s equations, equations (17)
and (18), read

7= 0/\/3 (17b)

I

r—\/3 (1+ ') (18b)

Due to the special case of torsional loading, complete information about
the notch stress and strain state is given by plotting nominal stress, §,
versus shear strain, y, and shear stress, 7 (Fig. 8).

For this type of loading Neuber's rule leads to better strain estimates.
Maximum deviations are about 15 per cent for strains and 5 per cent for stresses.
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Fig 8 Notched shaft under torsion. Notch shear stresses and strains calculated by finite element
analysis and approximate solution using Neuber’s rule

Combined bending and torsion

The chosen ratio of torque to bending moment is 7/B = 1.43,i.¢., 1,/0, = 0.7,
equation (24).

(1) Material stress—strain curve according to equation (22).
(2) From pure bending and torsional loading

K =

ala

=164, @ =20=0208 K,= % =129
T

tr

n 7 o

With the chosen nominal stress definition, equation (23), the maximum
stress, o, , the stress ratio, a, = 0.,/0,, and the principal stress direction,
d. (see Fig. 9) are determined as

_ — Kot \ . Ky :
[1 + a, + \/{(1 - @)+ 4([([0.(}]]) H 2V{1 + 3(1./0.)%} S
1.34-§ (@)

1l

Oey
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A2
1 +a - \/[(1 ~ TP+ 4(%) }
= o /) - 0.06 (28)

a, =
‘ - _ Ko7,V
I +@ + \/{(1 — @)+ 4(MK1;-Un) }
tan 2a, = 2Ky, a, = 27.2 degrees (29)

(1 - Ec)'KlG'Un ;

(3) ,/0, = 0.7 in equation (25) leads to Sploy =1.45.
{4) Calculation of K\, according to equation (5)

Kiq = 134-V/(1 + 0.06 + 0.06%) = 1.38 (5¢)

(5) Neuber's rule reads

E-e*
E-o.e4 = 1.90- 87 o (6¢)
§* =0.69-§ (7¢)
(6) Two assumptions are necessary
o = u, = 27.2 degrees = constant; i.e., &= 0475 radians (19¢)
£ Z0.06 =030 =0.35 = constant (20c)

e 14030006

(7} Stress and strain components at the notch are calculated with equations
(13), and (15)-(18).

Figure 10 reveals that Neuber’s rule enables correlation between load and
equivalent notch strain for combined loading cases as well. Maximum devi-

elastic
Qog =Uge = U,

Fig 9 Definition of principat stresses and principal stress direction
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Fig 10 Notch shaft under combined bending and torsion (7/8 = 1.43). Equivalent notch stresses
and strains calculated by finite element analysis and Neuber’s rule

ations are about 20 per cent for strains and 10 per cent for loads. Principal notch
stresses and strains are depicted in Fig. 11 in the same manner as for bending,.
In addition to the stress and strain ratios the angle (radian) of the principal
stress direction is plotted in the right-hand diagram. Finite clement results
indicate that the assumptions, fixed principal stress directions, and constant
ratio of the surface strains, &;/¢,, describe the actual behaviour at the notch with
sufficient accuracy.

As mentioned earlier, the accuracy of the method proposed depends mainly
on the chosen approximation formuta. To improve the estimates of notch
equivalent strains, Neuber’s rule has been replaced by Seeger’s formula,
equation (21), in Fig. 12, showing the stress versus notch equivalent strain
curves for bending, torsional, and combined bending and torsional loading.
The theoretical elastic equivalent notch stress, o, 4, has been used as a load
variable allowing a better comparison than nominal stress of the different
loading types. Maximum deviations are always smaller than 15 per cent for
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Fig 11 Notch shaft under combined bending and torsion (T/B = 1.43). Principal notch stresses and
strains calculated by finite clement analysis and approximate solution using Neubei’s rule
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Fig 12 Stress versus equivalent notch strain for the notched shaft under different loading types.
Comparison of finite element analysis with Seeger’s formula
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Fig 13 Notch shaft under combined bending and torsion (/B = 1.43), Principal notch stresses and
strains calculated by finite element analysis and approximate solution using Seeger’s formula

strains and 10 per cent for loads. Figure 13 reveals that the principal notch
stresses and strains can now be more accurately calculated.

Conclusions

(1) Components under multiaxial, proportional loading show ‘Masing-’ and
‘Memory-behaviour’, as in uniaxial situations.

(2) The load versus equivalent notch strain relationships can be established
by adopting the known approximation formulae (developed for uniaxial
notch stresses) and replacing the uniaxial quantities o, ¢, and K, by
equivalent quantities gy, &g, and K\ .

(3) Numerical and experimental investigations reveal that the notch element
boundary conditions can be described by assuming fixed principal stress
directions and a constant ratio, &,/ of the surface strains.

(4) The proposed procedure delivers the complete state of elastic—plastic
notch stresses and strains. Incorporating a multiaxial damage parameter
it can be employed for fatigue life predictions (for an example, see (30))
with no need of expensive non-linear finite element analyses.

(5) The method is restricted to proportional loading. It seems that, for
arbitrarily non-proportional loading, an incremental formulation of the
approximation formulae and flow rule is necessary.
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