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ABSTRACT A form of the cyclic strain energy density is used as a criterion for multiaxial
fatigue failure. The salient feature of this approach is based on the premise that the damage
caused in the material due to cyclic loading is related to the mechanical energy input. The
proposed criterion is hydrostatic pressure sensitive, and is consistent with the concept of crack
initiation and subsequent propagation. The predictions of the proposed criterion are compared
with the experimental results of biaxial fatigue tests, and are shown to be in good agreement.

Introduction

The fatigue failure of components has been studied intensively, and because of
active industrial interest and the complexity of the phenomenon, the general
topic has been subdivided into a number of inter-related fields. These divisions
include high and low cyclic fatigue, fatigue of notched members, and fatigue
crack initiation and propagation, among others. Furthermore, within each of
these divisions, investigations have been carried out on specific loading con-
ditions resulting in uniaxial or multiaxial states of stress. These investigations
have led to a general understanding of the fatigue failure phenomenon to an
extent that one may now attempt to propose some general theories concerning
specific aspects. Contributions made by various investigators have been men-
tioned in a recent survey paper by Ellyin and Valaire (1). They could be
subdivided into three categories: stress-based, strain-based; or energy-based
criteria. No attempt will be made here to summarise these contributions, and
the interested reader is encouraged to consult reference (1).

In general, the fatigue process may be divided into two phases, viz. initiation
of a ‘starting crack’, and its subsequent propagation until failure results. It
would be extremely useful if one could find a unifying damage parameter which
can describe these two processes. It is the objective of this paper to show that
the energy approach, advocated in 1974 by the present author for multiaxial
stress-states (2) and in subsequent works (3)-(5) can lead to a unified approach.
In this paper, a ‘total’ strain energy density concept is introduced for the
multiaxial states of stress. This energy may be viewed as a composite measure
of the amount of fatigue damage per cycle. Experimental data are presented to
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show the correlation between the total strain energy and cycles to failure. A
fatigue failure criterion is then proposed for the multiaxial stress conditions.

Notation

C Elasticstrain energy at fatigue limit

Cy Elasticstrain energy at fatigue limit for uniaxial condition

E Young’s modulus

E, Secant modulus

E, Tangent modulus

Iy Second invariant of deviatoric stress tensor

k Material constant in equation {(4)

K' Strength coefficient in the cyclic stress—strain curve, equation (4)
K* Strength coefficient in the master curve, equation (1)

Ni Number of cycles to failure

n* Cyclic strain hardening exponent of ‘master’ curve, equation (1)
n' Cyclicstrain hardening exponent of cyclic curve, equation (4)

8ij Deviatoric stress tensor

AW<®*  Positive elastic strain energy density per cycle

AWP Plastic strain energy density per cycle

AW! ‘Total’ strain energy density per cycle

AWy,  Positive elasticstrain energy at the material fatigue limit

a. Life exponent in equation (7)

&j Strain tensor

&jj Elastic part of strain tensor

el Plastic part of strain tensor

€ Effective strain (equation 23)

AT Range of effective strain

#{p) Energy coefficient in equation (35)

My Energy coefficient for uniaxial stress condition, equation (7)
o Strainratio = 2¢; /¥.x

o~ Biaxialstrain ratio, circumferential to axial strain ratio
Oy Stress tensor

Oix Trace of stress tensor = [

o Effective stress, equation (20)

Ao Range of effective stress

day Increase in the proportional stress limit (Fig. 2)

4 Poisson’s ratio

The total strain energy density

The energy approach has been used in continuum mechanics to derive field
cquations and variational principles. In the area of materials science, the
significance of the energy approach is in its ability to unify miecroscopic and
macroscopic test data and to formulate multiaxial life prediction models. To
demonstrate the concept, we will begin with the case of a uniaxial stress state.
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Fig 1 Fivst loading and stable cyclic hysteresis loop; plastic and elastic strain energies, The
effective-stress and effective-strain range coordinate system with origin at the tip of the mirimum
stress is also shown

A stable cyclic response of a specimen is shown in Fig, 1. Starting from a free
stress-state, O, the first loading curve is OA,, and the area under it represents
the strain energy density in monotonic loading. The area OA,C is the corre-
sponding plastic strain energy density. In the case of cyclic loading, the strain
energy density associated with the positive (tensile) stress is the area under the
curve GHA. In a similar manner, the cyclic strain energy density associated
with the compressive stress is the area under the curve CDE. The elastic parts
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Fig 2 Stable hysteresis loops at half-life translated along the linear portion to match upper
branches. The ‘master’ eurve thus obtained is shown with the origin at O*

of the strain energy are recovered during a full cycle, and the plastic strain
energy per cycle, AWP, is the area of the hysteresis loop, EGHACDE. The
damaging part of the above described input energies into material, are the
plastic strain energy and the tensile part of the elastic strain energy.

The plastic strain energy per cycle, AW?, can be calculated as described in
reference (4). It will suffice to mention that the expression for calculating the
cyclic plastic strain energy density applies for both non-Masing and ideal
Masing material description. In general, a ‘master curve’ different from that of
the cyclic curve is defined. This curve is obtained from matching upper
branches of the hysteresis loops by translating each loop along its linear
response portion, Fig. 2. The expression for the master curve with the origin at
the lower tip of the smallest plastic strain hysteresis loop, O*, is

Ag* Ac* lin*
* ] —
Ae E 2( 5 K*) (1)

where a prefix A refers to the range of the quantity unless otherwise specified.
The cyclic plastic strain energy is then calculated from
1-—n* 2

*
AWP = 2 — " py <t P
T AoAe? + T n* dophe (2)
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where
doy = Ao — Ao* = Ao — 2K*(AeP2)™ 3)

is the increase in the proportional stress due to non-Masing behaviour of
material, Fig. 2. Itis to be noted that for the ideal Masing behaviour, the master
curve and cyclic curve will coincide, i.e., n* = n’; dg, = 0; K* = K', and
equation (2) reduces to

AWP = 178 Agagp = g L2 B agtitnm (4)
1+ A 1+ n
where
k= 202K")y~"

The positive (tensile) elastic strain energy density for fully-reversed strain-
controlled tests, area ABCA of Fig. 1, is given by

1
AW‘H' = %AUASE = @ AO’Z (5)

Therefore, the total damaging energy input per unit material volume is

1—-n*
1+ »*

AW = AWP + AWS* = (Ao — 80p)Ae® + So,AeP + élg Ad?

(6)

which includes the plastic work and the positive part of the elastic strain energy.

A major part of this energy input is dissipated into heat, and the remaining
mechanical energy causes dislocation movements along slip lines and volu-
metric change, and eventual crack propagation. Thus, the fatigue life is related
to the above defined ‘total’ energy input, i.e., AW' = g(N). In particular, a
power law type relation of the form

AW' = 2, N% + C, 7

is suggested by the experiments. The constant C, is the elastic energy input
which causes no perceivable damage. It is related to the strain energy density at
the material fatigue limit, i.e.

1
C, =AW, = g‘E“:‘ (Aoz)fau’gue limit ®)

Figure 3 shows the total strain energy density, AW", plotted against fatigue
life, N, for various types of tests. The material used in these tests was a low
alloy carbon steel employed in the construction of modern pressure vessels. It
is designated as ASTM A-516 Gr. 70. The test procedure; chemical compo-
sition and mechanical properties are given in references (4)-(6). Also, the
conventional S-N curves can be found in the above references, Herein we are
concerned with a unifying damage parameter, and those material properties
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Fig 3 Totalstrainenergy density per cycle, AW'in uniaxial tests vsnumber of cycles to failure, V;

entering into the determination of the total strain energy density are listed in
Table I,

It is noted from Fig. 3, that the correlation with the uniaxial experimental
data is indeed good over the entire range of fatigue lives, We thus observe the
unifying nature of the proposed cyclic strain energy density. It is worth
emphasizing that the salient feature of this approach is that the damage, caused
in the material due to cyclic loading, is related to the mechanical energy input.
The cyclic strain energy density AW* given by equation (6) has a physical
interpretation, and it is also shown to be a parameter which can describe both
the initiation and subsequent propagation of fatigue cracks (7). In the follow-
ing, this idea is generalized to multiaxial cyclic stress states.

Table 1 Material properties of ASTM A-516 Gr. 70 low alloy carbon steel

Properties E Y K’ K* n' n*
(MPa) (MPa) (MPa)

Values 204000 0.27 1667 630 0.193 0.144

FProperties ay ot 17 oy Oy (93)0%
(MPa) (MPa) (MPa) (MPa) (MPa)

Values 993 842 —0.67 180 205 325
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Multiaxial eyclic loading

The concept of elastic and plastic strain separation, as demonstrated in Fig. 1
and equation (1}, is generalized to the multiaxial states in an incremental sense,
i.e.

dEij = dé‘?j + df;'l?j (!,] =1, 2, 3) (9)

The total strain energy density of a material element subjected to a cyclically
varying stress and strain history o;; and g; is given by

W= f Uij dé?jj (10)
where the integral has to be evaluated in an appropriate manner.

Elastic strain energy density

The elastic strain increment is related to the stress increment through the
generalized Hooke’s law

des, = i%’— oy — = doy,o, (11
The elastic strain energy density can be calculated from

We = L o; det; (12)
Substituting from (11) into (12) we get

we = IJ—EV G;iGij — % ()’ (13)

The stress tensor gy may now be decomposed into deviatoric and spherical
parts, i.e.

oy = 55 + oy (14)
Substituting (14) into (13) we obtain

wWe = glE— {3(1 + sy + (1~ 2v)(o)?) (15)

The above equation can be written as

we = WP + wY (16)
where the first term on right hand side is the strain energy density due to the
distortion of an infinitesimal element, and the second term is the strain energy
due to volumetric change.

Tests carried out by White ef el (8) and Morrison et el. (9) have indicated that

the fatigue life is a pressure sensitive process. It was reported that superposed
hydrostatic tension decreased the fatigue life, whereas that of compression
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increased it. Therefore, the hydrostatic part of the stress tensor, equation (14),
has an influence on the fatigue life. When the fatigue damage is related to the
plastic strain energy density (2)-(6), the effect of the hydrostatic pressure
cannot be taken into account, since def, = 0, because there is no change in
volume during the plastic flow process. While the contribution of tensile
hydrostatic pressure may be small in the low cycle fatigue regime, this may not
be true for long lives,

In the case of cyclic loading the elastic strain energy is recovered during a
complete cycle. One way to account for the hydrostatic pressure effect in
energy calculations is to consider the positive elastic strain energy density
during cyclic loading — similar to the uniaxial case, Fig. 1 —that is

: H(oP o™

AW = J gdg  (i=1,2,3) (17
H(opin)opis

where o; terms are components of the principal stress, and H is the Heaviside

function with the following properties
Hf’(aﬁ =1 for g =0, (18)
H(g)=0 for g,<0

Substituting from (11) into (17) and carrying out the integration between
o < 0and g™ > 0, we get

1+

et .
AW SV

. 1-2 a
@™ + e (o)’ (19)

where the first term on the right hand side of (19) is the distortion energy and
the second one is the energy associated with the volumetric change. In ¢quation
(19) the effective stress, 7, is defined as

62 = %Sijsi} (20)

Plastic strain energy density

Assuming a small-strain deformation theory of plasticity as the material model,
the plastic strain—deviatoric stress relationship is (10)

3 Sii 3 1 1
%=54={E~Eﬁ (1)

where E, is the tangent modulus of the stress strain curve and E, is the secant
modulus of it. Accordingly
E, = do/d¥ and E, = o/¢ (22)

where 0 and T are effective-stress and effective-strain, respectively. The
effective-stress is given by equation (20), whereas the effective-strain is defined
as
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€= (25ij€ij /3) 12 (23)

It is to be noted that for stable cyclic behaviour, the use of the J, deformation
theory is justified on the account of the proportional or nearly proportional
loading. The incremental form of equation (21) is

371 1 31 1
deb = 2= — . Jds. + 2l 2= ~ =2,
i T2 (E E) dsi + 2(5, ES)S" (24)
The plastic strain energy density can now be calculated by evaluating the
integral

WP = [ oy de¥; = [ s de¥; (25)
Introducing equations (20), (22) and (23) into (24), we obtain

W"=J(L—%)Bd6= Jc‘rdEP (26)

f

t

To evaluate the tangent modulus, E,, it is generally assumed that the
effective stress—effective plastic strain (T vs €°) relationship is similar to that of
uniaxial o vs &7 curve. (See for example, Ellyin (11) for the experimental
corroboration.) From equation (1) we thus get

—_=

o

= e kv (27)
and
1 = _dE* = i + E gE{l-n)n* (28)

where k* = 2(2K*)"". Note that equations (27) and (28) are written with
respect to the origin O* of the master curve, Fig, 2. For the sake of simplicity of
demonstrating the concept, for the time being we will assume that the origins O
and O* in Fig. 2 coincide, i.e., the material behaves as an ideal Masing model.
With reference to Fig. 1 and coordinates A7 and A%, the plastic strain energy
per cycle, AWP, can be evaluated from equation (26) by noting
Ag
AW?P = AgAz — 2 J AT d(AD) 29)
0
Substituting from (27) into (29) and integrating, we obtain

AWP = g 128 pgaenm (30)
1+n

For a uniaxial stress state, & = ¢ and (30) reduces to (4). Comparing (4)
with (2) we note that, for the non-Masing material, an additional term,
(2n*/1 + n*)dogAe?, has to be added to that of the Masing material. In the case
of the proportional or nearly proportional multiaxial loading, the additional
term due to the non-Masing behaviour is
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4n* Ag*\ln"
1tne (21{*) 0% (31)

AWRy =

The effect of this term becomes important as the range of plastic strain (or
stress) increases,

Combining (19) and (30), and noting that for the fully-reversed tests g™* =
AG2,and k = 202K "), we get

1+ v

12E

+ 20 —n")
1+ #

1 -2y
6F

(-ZKJ)—lﬁ'n'(Aa)(l-{-n')h!' (32)

AW' = AW + AW?P = (A5)* + (07)?

In the case of the non-Masing material, the last term on the right hand side of
(32) has to be modified by changing the cyclic stress—strain constants to those of
the master curve. That is, replacing #’, K', and A7 with n*, K*, and AG* and
adding equation (31). Thus, in either case, equation (32) has the general form of

AW = AWY(J,, IT™) (33)
where J, = G%/3 is the second invariant of the deviatoric stress associated with
the distortion energy, and IT* is the positive {tensile) hydrostatic pressure.
Multiaxial failure criterion

A failure criterion for the multiaxial fatigue can now be proposed relating AW'
to number of cycles to failure, N;, and imposed triaxiality condition, ¢

AW! = G (N, o) (34)
In earlier works, we have suggested a particular relation of the power law type
AW' = %(o)N§ + C (35)

In the above equation x{g) is a function of the imposed strain triaxiality.
Equation (35) is similar to that of equation (7) for uniaxial loading. As a first
approximation, we may take a linear function for x(g), i.e.

x(0) = Ag + B 0 = 2&/(e; — &) (36)

where A and B are material constants to be evaluated. Substituting in (35) from
(33) and (36), we get the following multiaxial fatigue failure criterion

AW, IT™) = (Ap + BIN{ + C (37)
It is noted that the criterion (37) is hydrostatic pressure sensitive and has an
invariant property, i.e., it is a frame indifferent criterion,

Comparison with experimental results

To compare the predictions of the proposed criterion, equation (37), with
experimental results, we must first determine the material properties contained
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in the left hand side of (37). The elastic properties E, and rare readily available
from material tables. The cyclic properties n’, K’ (or #*, K*) are obtained
from the cyclic stress—strain (or master) curve. The constants on the right hand
side of (37) are determined as follows. From the uniaxial stress results, g =
—2v/{1 + v), we obtain the value of the exponent « and the relations

= {~2¥/(L +v)}A+ B

38
C,.=C 8
A
Kk (p)
340
300
@
260
220
k(p} = -142p + 187
180
T N I { >
1.0 -05 0 05 €9

1.0
Pole T eg)/2

Fig 4 Sirain triaxiality function x{p) vs p: predicted line and experimental values {circles) are
shown on the graph




582 BIAXIAL AND MULTIAXIAL FATIGUE

102 I

11 t]l

L1 LA

1

Strain Energy Density, AW! (MJ/m3)
5

e p'=-08

0.1 T N B N I T N | T N N B
102 108 10 10°

Cycles to Failure, Ny

Tig 5 Predicted cyclic strain encrgy density, AW', vs number of cycles to failure, ¥, and
experimental data of reference (12)

Results of tests for another strain ratio are required to provide two equations
for the two unknowns A and B. Note that in the case of low cycle fatigue, the
constant C associated with the elastic strain energy at the fatigue limit may be
neglected (cf Fig. 3).

Experimental data for fully-reversed strain-controlled tubular test specimens
under biaxial stress conditions were reported by Lefebvre ef al. (12). From the
uniaxial stress tests we get a = —0.54, and the results of strain ratio o* =1,
combined with the uniaxial case yield, A = —142 MJ/m? and B = 187 MJ/m>.
The lincar equation (36) with these coefficients is traced in Fig. 4, and is
compared with the best fit experimental data. It is noted that with the exception
of one point, o* = 0.5, all other data fall very close to the predicted values.

The predictions of equation (37) are compared with the experimental data in
Fig. 5. As noted earlier, there is considerable scatter in the results of strain ratio
0 = 0.5. The predicted values and experimental data are in good agreement
for other strain ratios. It is worth mentioning that the results reported in
reference (12) may have been subject to secondary effects, thus resulting in
lower fatigue lives. For example, the slope of the uniaxial curve given by Fig. 3
for the same material is « = 0.67 as compared with « = 0.54 in reference (12).
However, the purpose of this comparison is to show the predicted trend (from
the given data of uniaxial condition), rather than precise life prediction values,
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Conclusions

A multiaxial fatigue failure criterion is proposed based on the cyclic strain
energy density. It has an invariant property, it is hydrostatic pressure sensitive,
and it is a function of the imposed strain triaxiality condition. The criterion can
be used for life predictions. The majority of the material parameters can be
determined from the uniaxial test data. Predictions of the proposed criterion
are in good agreement with biaxial fatigue test results, The proposed criterion
is also consistent with the concept of crack initiation and crack propagation,
and has a unifying feature for short and long life regimes.
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