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ABSTRACT Codes for design against fatigue invariably describe failure as a crack initiation
process, as may be characterised by a wniaxial strain/life curve. When multiaxial strains are
induced in engineering components, they can be related by an effective strain formula to the
uniaxial curve, this formula being couched in terms of the principal strains applied. However,
fundamental studies of the fatigue process show that it is one of crack propagation, which implies
that the most suitable effective strain criteria should take account of the two basic propagation
phases, Stage I and Stage II crack growth, A new formula is proposed, which is compared to
available experimental data for both proportional and cut-of-phase multiaxial loading.

Introduction

An indispensable aspect of any fatigue design code concerned with finite
lifetimes is the treatment of multiaxial cyclic strains. Since the allowable cyclic
strain range for design purposes is generally based on empirical data for a given
material, temperature, and environment, the designer must relate such data to
the actual multiaxial cyclic strains extant in a component. Invariably the
material data are generated with the uniaxial stress state, i.e., using push—pull,
rotating bending, or cantilever bending tests. Therefore, most design guidelines
have been based on the reduction of a multiaxial cyclic strain situation to an
equivalent uniaxial strain range, from which a life estimate can be made.

An important example (1) is the octahedral equivalent strain range, which is
based on the effective strain employed in plasticity theory and the Prandtl-
Reuss equations (2). In terms of principal strains, &, £, and &3, this may be
written as

1
Aegg, = m {(Ae; — Agy)® + (Aey — Agy)* + (Aey — Ae)*]? (1)
where v is the elasto-plastic value of Poisson’s ratio, and A represents the range
of strain. In reference {1), v is taken to be 0.5. Clearly equation (1) can be
associated with the von Mises yield criterion, for a strain level equal to cyclic
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yield. Another equivalent strain formula is based on the Tresca or maximum
shear criterion (3), giving

Aty = ﬁ (Ae, — Asy) @
where &) = ¢, = ¢;, ¢ being the cyclic strain amplitude.

These definitions of equivalent strain are in stark contrast to the implications
of linear elastic fracture mechanics (LEFM), on which defect tolerant design
codes will inevitably be based. In situations where LEFM is applicable, cracks
are observed to follow the opening mode, the crack path being normal to the
maximum principal stress. This is true for both ductile and brittle materials in
low stress situations (stress well below yield), the rate of crack propagation
being determined by the stress intensity factor, X, through relationships such
as the Paris law

da _ -

v = C(AK) (3}
where C and n are material constants. Thus LEFM suggests that the maximum
principal stress range is a fundamental parameter in determining fatigue life,
because all fatigue failures are caused by the development of cracks throughout
a components lifetime. It should be noted that all mode I stress intensity factors
may be written as (4)

K = Yoy\/(na) )

where Yis a factor dependent on geometry alone, and ¢, is the stress normal
to the crack of length, 4.

This paper re-assesses the equivalent strain concept in the light of current
knowledge concerning the behaviour of fatigue cracks. An equivalent strain
formula is derived from a simplified analysis of Stage [ and I crack propagation
in smooth specimens and is then compared to published experimental data,

Notation

A Weighting function

a Crack length

b Bending fatigue strength
C Constant

E Young’s moduius

G Modulus of rigidity

K Stressintensity factor

k Cyclicstrength coefficient
m Constant

N Number of cycles

n Cyclicstrain hardening exponent
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b

Ratio of minimum and maximum loads
Torsional fatigue strength
Geometry factor

Shear strain amplitude
Range

Normal strain amplitude
AylAe, biaxiality factor
Poisson’sratio

Normal stress

Shear stress

ubscripts

Crack propagation equivalent strain
Elastic

Equivalent strain
Fatigue limit

von Mises

Maximum shear value
Material constant
Plastic

Rankine

Secant modulus
Tresca

Yield stress

Principal values
Stagel

Stage Il
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Equivalent strain criteria

Equations {1) and (2) define the two most widely used equivalent strain criteria,
both of which are based on monotonic yvield criteria on the assumption that
fatigue is governed primarily by deformation processes. [ue to the lack of
success of these equations in correlating empirical fatigue data, a number of
formulac for a fatigue equivalent strain have been proposed, which are
adequately reviewed elsewhere (5)-(7). Most approaches require one or two
material constants to be incorporated in the equivalent strain to provide an
adequate fit to observed behaviour. This implies that data from more than cne
multiaxial stress state are necessary to derive the equivalent strain, which is a
serious shortcoming for the designer who generally has only uniaxial results
available.

An example for high cycle fatigue behaviour is given by McDiarmid (8),
where a term = /b is introduced into the relationship for allowable surface
strain amplitudes. Here ¢ is the torsional fatigue strength and b is the bending
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fatigue strength at the fatigue limit. A compilation of values for #/b can be found
in Forrest (9).

Two examples of low cycle fatigue criteria are based on linear (10) and
quadratic (11)(12) relationships using shear and normal strains, respectively,
similar to the expressions first proposed by Gough et al. (13) in stress terms for
high cycle fatigue. Each case involves the fitting of the equivalent strain formula
to two strain-life curves, one for uniaxial push-pull or reversed bend tests and
a second for reversed torsion. Although good correlation of low cycle fatigue
data is achieved by such methods, the approach developed in this paper uses
only the uniaxial curve and a single value, Q = #/b, to characterize the multiaxial
fatigue response. This should minimise the additional data required over and
above the present fatigue data base available to the designer.

Phases of fatigue crack growth

There are two dominant phases of fatigue crack growth, termed Stage I and
Stage II by Forsyth (14). Stage I is a shear mode of growth which extends for
one or two grains from the point of crack initiation. Stage II follows and, being
normal to the maximum principal stress (or strain), it exhibits mode I crack
opening and generally produces a fracture surface characterised by striations.

Stage I cracking is observed to play a significant role in long life or high cycle
fatigue (15), whereas at higher strain ranges (low cycle fatigue) the majority of
the fracture surface of a failed specimen shows Stage II failure. The relative
proportions of Stages I and IT depend on the number of cycles to failure (15).
Stage I, being a shear mechanism and limited to the first one or two grains, is
readily identified with microstructurally short cracks (16). These are currently
receiving considerable attention since they do not obey the rules of conven-
tional fracture mechanics. Cracks form on persistent slip bands or grain
boundaries, always aligned with planes that experience maximum shear defor-
mation. Thus, one might expect a Tresca criterion to correlate the maximum
shear strain, which provides the driving force for microstructurally short
cracks. A study of short cracks in a medium carbon steel subjected to tensile
and torsional strain cycles, respectively, confirmed that the Tresca criterion
showed a satisfactory correlation of crack growth rates (17). Thus the relevant
equivalent strain is given by equation (2), noting that shear stress and shear
strain are uniquely linked through the cyclic stress—strain curve (18), for ductile
metals.

Stage II cracking bears all the characteristics of mode I LEFM crack
behaviour. Therefore one might reasonably expect the maximum principal
stress to correlate crack growth rate, since this determines the stress intensity
factor, equation (4). This indicates the importance of the Rankine failure
criterion, which has been confirmed by biaxial fatigue studies in the low stress
regime (19), where 0y,,x < 0yic1a- Even where the stress amplitudes approach the
yield stress, the normal stress on a crack has been observed to be the most
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' important parameter determining crack propagation rate (20). For elastic
conditions, the maximum principal stress is given by

0y = E{ei(1 — 2ve) + veler + & + e)/{(1 + v )(1 — 2v,)} ()

where E and v, are Young’s modulus and the elastic Poisson’s ratio. For
proportional loading conditions, equation {(6), may be extended to elastic-
plastic conditions by replacing E with the secant modulus, E,, and v, with the
elasto-plastic Poisson’s ratio, v. Thus an equivalent strain may be defined,
equal to oy/E, where

1

Eeg, = T+ {e1 + (g, + & + &)v/(1 — 2)} 6)

The correlation of LEFM crack propagation data by the strain oy/F for a wide
range of metals has been observed previously by Frost et al. (21), who show that
mode I crack growth data fall into a narrow band when plotted against AK/E.
5o the use of equation (6) to correlate the growth of long cracks should find
general applicability.

The first phase of fatigue life, crack initiation, occurs very rapidly when
compared to the Stage I growth period, even in high cycle fatigue close to the
fatigue limit (16). Similarly, the final phase of ductile crack growth, or Stage I1I,
occupies a negligible fraction of the overall endurance. Thus, in life assessment
and the definition of an equivalent fatigue strain, the endurance can be divided
into two significant periods, (a) Stage I, which takes equation (2) for an
equivalent strain, and (b) Stage II, for which equation (6) is the equivalent
strain. Equation (2) may be re-written as an amplitude to enable direct
comparison with equation (6)

Eeqp = ﬁ_::-_—v) (81 - 83) (7)

where &, = €, 2 €1, and ¢, is the greatest principal strain amplitude in the surface
plane of a biaxially stressed component. Note that equations (6) and (7) have
been derived for the case of fully reversed strain controlled cycling,

A crack propagation based equivalent strain

Since fatigue life consists of two stages of crack growth, governed by the
equivalent strains of equations (7) and (6}, respectively, the overall effective
strain for fatigue should combine these two equations in proportions given by
the number of cycles spent in Stages I and 11, respectively. Thus one may define
an equivalent strain

Eeqe = Aleq, + (1 - A)ey, (8
where the weighting function A = Ny/(N; + Npp). Here Ny is the number of
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cycles spent in Stage I and V; is the number of cycles in Stage 1, together with
any transition.

Now, in high cycle fatigue, A will take a low value to favour the Tresca
criterion for Stage I cracking, but as the applied strain range is increased, A will
increase, approaching unity for low cycle, high-strain fatigue situations. Thus,
A may be taken as a function of endurance, or alternatively an equivalent but
more convenient form for A depends on strain amplitude. Fatigue is strongly
dependent on cyclic plasticity, and plastic deformation is, of course, related to
the Tresca equivalent strain directly (18). We, therefore, postulate the weight-
ing function '

A =1—V(eolteg,) 9 |

which has been chosen to give conservative life predictions for the experimental
data presented in the following section. The strain ¢, is a material constant,
which may be related to the uniaxial fatigue limit, ¢ and Q, the /b ratio.

For combined tension—torsion loading, equation (7) becomes

Eeq, = V€ + Y1 + v)?} (10)
and equation (6) becomes
Eog, = (oq, T £)2 {11

where £ and y are the axial and torsional strain amplitudes. Correlating
equation (8) with the uniaxial fatigue limit at high cycles and putting ¢ = b/E
and v = /7, where

G = E/{2(1 + 7))}

after some algebra, one obtains

o ™ (LfQ - 1)2'2Q5ﬂ (12)
since
Eq = b/E

Thus to derive the equivalent strain &, _, the only material data required are the
uniaxial fatigue limit amplitude, &7, and the value of O = #/b. The value of
comes from the uniaxial strain-ife curve.

Correlation of experimental data

In order to evaluate the effectiveness of the equivalent strain in equation (8),
three sets of data for different materials have been considered.

Firstly, results have been published for austenitic stainless steels at ambient
temperature by Sonsino and Grubisic (22) and Moguerou et al. (23) using Type
321 and 316 steels, respectively. Using fatigue limits from NRIM data sheets
(24a)—(24b), the results are plotted for ¢, in Fig. 1, together with results for
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Fig 1 Correlation of fatigue data for type 316 and 321 stainless steels by: (a) crack propagation
equivalent strain, (b) Rankine equivalent strain, (¢) Tresca equivalent strain (22)(23)
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Table 1 Material properties employed in the analysis

316,321 316 1% Cr-Mo-V

Material stainless steel stainless steel steel
Temperature (°C) 20 400 20
k (MPa) 1014 1623 1056
n 0.199 0.242 0.085
E(GPa) 198 167.3 208
v, 0.29 0.322 0.29
Q 0.693 0.693 0.60
eq(%) 0.115 0.155 0.193
eo(%) 0.0313 0.0422 0.103
References (22)(23)(24a,b) (11)(18)(24a,b) (11)(18)(25)

the Tresca and Rankine equivalent strains for comparison. The material data
used in the equations are listed in Table 1. It is apparent that equation (8) gives
a significant improvement over the traditional Tresca equivalent strain, and is
more conservative than the Rankine equivalent strain compared to the uniaxial
line.

In order to evaluate the elasto—plastic Poisson’s ratio in the derivation of
Fig. 1, the multiaxial form of the cyclic stress strain curve was taken from the
maximum shear stress and strain (18),

Tmax = (K/2) (meax"l-s)” (13)

Where Ypmay i the maximum plastic shear strain amplitude, k is the uniaxial
cyclic strength coefficient, and » is the cyclic strain hardening exponent. Then
Poisson’s ratio is given by (1)

v =05~ (0.5 - v)/(1 + Ee{™"ik) (14)

where the equivalent plastic strain, &, is given by ¥ppa/1.5.

Secondly, results are shown in Fig. 2 for a Type 316 austenitic stainless steel
at 400°C, in combined tension—torsion tests (11). A clear trend can be observed
with biaxiality, 1, where 4 = Ay/A¢ , for this material which exhibited a degree
of anisotropy. In the derivation of equations (8), (9), and (12), isotropic
material properties were implicitly assumed, and, therefore, a divergence in
experimental results is to be expected for any anisotropic metal.

Thirdly, a bainitic 1% Cr—Mo-V steel has been examined in low cycle fatigue
for both proportional and non-proportional loading (11)(25)—(27). Since no
fatigue limit data were available for this material, the value of O was assumed
to be 0.6, a typical value predicted by the von Mises criterion (9). The uniaxial
fatigue strength was estimated as one half of the tensile strength. Even with
these simple assumptions for the derivation of eg, the low cycle fatigue
behaviour shows a conservative correlation of data, generally within a factor of
2 on life, for the proportional loading data in Fig. 3. Note that the solid points
plotted correspond to repeated strain cycling (R = 0), whereas the open points
show fully reversed strain controlled results (R = —1).
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For non-proportional loading, the analysis of fatigue behaviour is complex |
(7). Although systematic analysis of stress-strain behaviour can be
accomplished, there is no generally agreed method for relating fatigue endur-
ance to applied strains. However, in low cycle fatigue, reduced lifetimes are
found where rotation of principal axes of strain occurs during a cycle (26).
Therefore, a simple design rule is suggested, that the out-of-phase applied
strain amplitudes should be treated as if they were in-phase, in order to obtain
an artificially high value of equivalent strain, e, . There is no physical
justification for such a procedure, as strains of the calculated magnitude never
arise at any time during the cycle. Its value lies in its simplicity of application,
and in its ability to represent actual behaviour. This procedure has already been
employed in high cycle fatigue, demonstrating a conservative tendency (28),
and Fig. 4 shows low cycle fatigue results for the bainitic Ct—-Mo-V steel. The
conservative nature of the method disappears at low lives, but, nevertheless,
lives are within a factor of 2 of the equivalent strain-life relationship.

In Figs 1-4, the lines drawn are fitted to the uniaxial results alone, since these
are generally the material data available to the designer.
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Fig4 Correlation of data for 1% Cr-Me—V steel under non-proportional loading with sinuseidal
wayeform (26) and complex strain cycles (27). The dashed line corresponds to the uniaxial data of
Fig. 3, where a triangsiar waveform was used
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Discussion

Satisfactory correlation of experimental results with the proposed equivalent
strain criterion has been demonstrated for three sets of experimental data in
low cycle fatigue. Good correlation of high cycle fatigue data is ensured by
fitting the formula for &.,_to the fatigue limits in tension and torsion (8) through
equation (12). This new criterion differs from most previous formulae because:
(a) it combines both low and high cycle fatigue behaviour, (b) it is based on
considerations of actual fatigue mechanisms, (c¢) a minimal amount of multi-
axial data is required (being the ratio @ alone).

Equations (6)—(8) have been derived from observation of fatigue crack
propagation behaviour. The use of equation (9) provides the only means for
fitting empirical multiaxial fatigue results. Other forms for equation (9) could
be considered, for example

A =1~ egleg,
which gives the corresponding material constant
g0 = 2(1 — O)eq

This formula for A gives lower values for equivalent strain, and data correlation
is still good although less conservative than the results in Figs 1-4.

In practice, the full evaluation of & _is frequently not necessary. If Lo, 18
determined initially, equation (7), and if &.,_gives a satisfactory design life on
the strain-life curve, no further analysis is necessary. The evaluation of ¢
and, hence, &,,_can only extend the allowable life, as €eq, 18 an upper bound
solution for strain. Secondly, for stress states in the first and third quadrants of
biaxial stress space, £eq., £eq,» and &y, are identical, so only &, needs to be
determined. So in the majority of cases, the Tresca failure criterion is a
sufficient condition for assessment of a multiaxial cyclic strain state,

Conclusions

(1) Multiaxial fatigue life can be assessed in terms of two phases of crack
propagation, Stage I and Stage I1I.

(2) A new equivalent strain criterion is proposed for fatigue, based on crack
propagation mechanics.

(3) A simple method is proposed for treating non-proportional loading in
design assessments.

(4) Both low and high cycle fatigue behaviour are encompassed by a single
equivalent strain criterion.
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