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INTRODUCTION

Neither elastic nor elastic-plastic fracture mechanics can treat such
time-dependent problem as delayed unstable crack extension. The behaviour
of many engineering materials (e.g., polymer, rock, concrete, etc.) exhibit
time-dependence even at room-temparature. Hence, only when we properly
select rheological models as the basis for our study of crack problems, can
we obtain results close to objective reality. Recently, a theory of the
rheological fracture of idealized linear viscoelastic cracked bodies has
been developedtlmﬁ]. This theory is in fact a direct generalization for the
Griffith~Irwin approach of idealized linear elastic cracked bodies. It plays
the same important role as the linear elastic theory does for elastic bod-
ies. For many practical engineering problems, it is of great interest to
know what level of load could be applied in order to avoid the instantaneous
or delayed catastrophic failure of the structure members rather than to know
the velocity of the stable crack growth. In dealing with the viscoelastic
crack problems, it is of great importance to distinguish two approaches of
treatment, based on different assumptions to the logical model of the me-
dium. The first one is based on the assumption that the medium is linearly
viscoelastic at all of its points and no plastic deformation occurs at the
crack edge. The second one assumes that a crack is propagating in a linearly
viscoelastic medium in the presence of a thin plastic zone ahead of the
crack tip. As we know, in the former case, there is no slow stable crack
growth under constant loads even for those cracks with dK/da>0. The critical
state (the initiation of unstable crack propagation) occurs at a certain
time t, after the application of the load. It is well worth notice that dur-
ing this period (Oététc) the initial size of the crack length remains un-
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changed, but the displacement on the crack surface increases gradually on
account of the time-dependent behaviour of the material. As a result, the
energy release rate GI(t) for a viscoelastic cracked body increases also

[1]

with time . As GI(t) reaches GIc’ the equilibrium of the crack becomes
unstable and the crack will begin to propagate in the idealized viscoelastic
medium with an unbounded velocity in the absence-of inertial constraints.

If the creep compliance of a material possesses an upper limit, then there
exists a lower limit load/crack size below which a crack will not propagate.
We refer to this load/crack size as the critical load/crack size of delayed
crack instability. In the latter case, the approximate crack growth velocity
was derived by Schapery[uj, McCartney[S] by using the generalized Baren-
blatt-Dugdale crack-tip model. They showed that there is also a delay or
incubation period which must elapse before crack growth takes place. The
crack length is also constant during this period. Nuismer[6} pointed out
that for (idealized) linearly viscoelastic materials, the thermodynamic pow-
er balance as a fracture criterion can only be used to predict crack initia-
tion but not crack growth.

Of course, it should be noted that this conclusion is valid only for
those cracks with dK/da>0. Nuismer arrived at a oriterion in agreement with
that reached by Graham[7]. However, in his derivation he used an expression
fér the crack surface displacement [6,Eq.(2)], which is based on the quasi-
static theory and implies that the crack moves immediately as the stress is
applied. As we have mentioned above, for idealized viscoelastic eracked bod-~
ies, the crack-tip will not move until t = t.> and once t reaches t, [6,
Eq.(2)] is not applicable for those cracks with dK/da>0, Thus, his result
is questionable.

Since when tst, the crack problem does not involve a time-dependent
boundary region, the viscoelastic correspondence principle is then appl-
licable only for tst,. By using this principle and the equation of the thep-
modynamic power balance, the main results of LEFM have been generalized to

the idealized viscoelastic cracked bodies.
CRITERION FOR DALAYED CRACK INSTABILITY

Consider a fixed region R occupied by a linear viscoelastic material.
Let us restrict our consideration to infinitesimal displacement and veloc-
ity. Thus the partial derivative with respect to time is equal to the mate-

rial derivative within the first order and the difference between the Eulerian
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and Lagrangian strain tensor can be neglected. Let u;(x, £)s E:.(x,t) and
(x +) denote the Cartesian components of the displacement, infinitesimal

straln and stress respectively, which are defined for all (x,t) on Rx[0,@),

The constitutive relations describing the deformation of isotropic linear

viscoelastic solids may be written in the form of the creep integral law

T
elj(x,t) = g8;.%dJq = sij(x,t)J1(0)+ Osij(x,t)BJl(t~T)/é(t—¢)dT 1
t
ekk(x,t) = Okk*dJQ = Gkk(x,t)J2(0)+ Ockk(x,t)aJQ(twq)/B(t—T)dr

where eij and Sij denote the derivatoric components of strain and stress

respectively, and # denotes the Stieltjes convolution. And

(x t) =gy (x Lo 3 13 £ (%515 sij(x,t) = cij(x,t}— 3 ljckk(x,t)
(2)

under uniaxial load the constitutive equation reduces to
e(x,t) = o#dD = O(X,t)D(0)+Jgo(x,t)BD(t—ﬁ)/a(t—w)dT (3)

Jl’ J2, D are the creep functions in shear, in isotropic compression and in
uniaxial tension respectively. ¢S(t) = BJl(t)/Bt, ¢d(t) e 8J2(t)/at,

¢1(t) = 3D(t)/9t are the corresponding creep kernels. v, u, k, E stand for
Poisson's ratio, the instantaneous shear, bulk and Young's moduli respec-
tively while 1/(2u) = Jl(O)’ 1{(3k) = JQ(O) and 1/E = D(0). Let the Laplace
tpansform of u be written as uﬁ. According to the correspondence principle,

: . . -3
the necessary substitution of material constants are[1 1

ES
¥

S = 1/[pJf(p)] = 2u/(142u0,), E = 1/0pD ()] = E/(1+E¢i) (W)

Since the crack fields of elastic bodies are known, the corresponding vis-
coelastic solution can be obtained by an inversionESj. Using these crack-
tip fields and the equation of the thermodynamic power balance and following
Trwin's method for caculating the energy release rates G(t) at any fixed
time t, we arrived at a result in the form

Gi(t) = Gi(O)fig(t), fig(t) = fic(t)fiu(t) (i = 1,11,111) (5)

[1]

which is different from that of Nuismer . Here fig<t)’fi6(t)’ fiu(t) are
the time factors for the energy release rates, stress intensity factors and
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displacement components respectively. It can be shown that if the applied
stress is assigned and if the stess intemsity factors can be written in the
form

K;(£) = K £, (t) (1 = T,I1,117) (6)

then
£, 08 = fic(t)*L“lm'/E*’) = [f; ()xdC'(£)1/C'(0) (i = 1,II)

o , (&)
Frrpa(t) = frppo(0)sL” Yan® = U 1o (t)#dT (11701 (0)

where C'(t) denotes the creep function for plane stress D(t) or that for

plane strain C(t), which are defined through

1/E¥ = pd*(p),

for plane stress

pC‘{r (p) = 2 . :
1™ E" (8) =
— = —(2— —) for plane strain :
E on® ot
. )
=PJ (p)[2~ ——1]
D" (p)
so that
-1 %
L "D (p) = D(t) for plane stress
cr(t) = (9)
L [Jl(p)(2~dl(p)/D ‘(p)] = C(t) for plane strain
where
ctie pt
L ir)] = E?ch o (p)ePtdp

is the inverse Laplace transformation of F(p), the constant c being any num-
ber greater than the abscissa of convergence.
Let us write down the fracture criterion for mode I Griffith. crack of

length 2a under in-plane loading ofa(t) applied at infinity:

GI(t) = GI(O)fIg(t) = G (10)

Ic

£ w -1 ¥ E ] F
Ig(t) = fIg(t)[flo(t)*L (E'/E™)] = flc(t)[ro(t)*dc‘(t)]/C'(O) (11)

where GI(O) = (o%ma)/E' is the instantaneous energy release rate. For a
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given material GIC is assumed to be g constant. For those cracks with
dK/da>0, if GI(O) = GIc’ the limiting equilibrium of the crack will become
unstable and the crack will propagate immediately as the load is applied.
If GI(w) = GI(O)fIg(W)<GIC, the crack will not propagate forever, If
GI(tC) = GI(O)fIg(tc) = Gr.» then at a certain time t.> delayed instability
will occur. The critical state for delayed instability is determined by the

condition

G (=) = o 2 ' =

I( ) fIg( Y(o“ma)/E GIC

If the crack size/load is assigned. the critical load/crack size of delayed

crack instability may be determined from Eq.(12) provided fI (t) is known.
g

If the load/crack size is smaller than this critical value, the state of

delayed crack instability can never be reached. For Maxwell bodies, standard

linear bodies and Burgers bodies, the time factors are given in the tables
of [4.,07.

In particular, if EIU(t) = U(t) is the unit Heaviside step function,
according to the theory of final value and Eq.(11), (9), (4), we obtain

+.

liﬂ D(t)/D(0) = %i@ pD*(P)/D(O) & %i@ (1+E¢T), for plane stress

£ (°°> = B o
g lim c(t)/e(o) = 1ig pC(p)/c(0)
’ (13)
= lim pdy(p)[2-35(p)/D*(p)]
P*O %
= 13 ( b 1+v +2u¢3
= pi% 1+2u¢s)[1+3:$(1-1+E¢$ for plane strain

Generalized Kelvin Solids
The shear and uniaxial creep functions take the form

J(6) = 0 (0)[1+ 5 1w (1 "Pity5
1 1 iz_jlu ;(1-e )]
n =it (14)
D) = p(O)[1+ 3 EC, (1 1 )]
1=1
From Eq.(13), we have

n
1+E Z;Ci o for plane stress
~ i=1 1+ W,
fIg(m) - m 1+v ui§1 T (15)
(1+u‘z:wi)[1+I:;(1- )] for plane strain
i=1 1+Eiglci
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The final value of time-Ffactor for standard linear solid may be obtained
from Eq.(15) by setting m = n = 1. If the Poisson's ratio v remains con-
stant, time-factors-for plane strain will reduce to the same results as

those for the plane stress.
Solids for Which Creep Kernel Has a Singularity at t = 0

Sometimes better results can be obtained if we take the creep kernel

in the form
$5(t) =Ae“Bt/t1“a, 0<a<l, A>0, B>0 (16)
Substituting Eq.(16) into Eq.(13) yields

£ (») = 1+EAT(a) /g% for plane stress (17)

Ig

where["(a) is the Gamma function.
CONCLUSIONS

By using the viscoelastic correspondence principle, the main results
of LEFM have been generalized to the idealized viscoelastic cracked bodies.
It is shown that

1. The stress intensity factors, the displacements and the energy
release rates for viscoelastic cracked bodies can be obtained by mutiplying
those for elastic cracked bodies by some time-factors. These factors may be
found in [1,2].

2. For an idealized linear viscoelastic cracked body, there is no slow
stable crack growth under constant load even for those cracks with dK/da>o.
The equalibrium of a crack may become unstable instantaneously or at a cer-
tain time t. after the application of stress, depending upon the magnitude
of the applied stress (crack size) when the crack size (applied stress) is
assigned. t, may be determined from Egs. (10) and (11), it depends on the
entire history of loading and the time-dependent behaviour of the material.

3. If the creep function of a material possesses an upper limit, then
there exists a critcal load (crack size) of delayed crack instability. From
Egs. (13), (15), and (17) it is seen that this critical load/crack. size

does not depend upon the intermediate values of Jl(t)’ D(t) and is comple~
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tely determined by their final values.

4. For Maxwell and Burgers bodies GI(t) will increases with time

unboundedly because of the existance of viscous flow. In this case, condi-

tional critical load/crack size of delayed crack instability may be useful.
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