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Fracture criteria is a generally frustrating subject to the fracture
mechanics theorist because due to an early theorem of Rice [11, in a
medium where the stress at the crack tip saturates to a finite value, the
energy absorbed by the underiying crack, as it moves, from the external
driving mechanisms is zero. That is, the underlying crack is effectively
disconnected from the process, and the fracture criterion becomes diffi-
cult to address on the continuum level. On the other hand, physical
intuition suggests that local conditions at the crack tip must have a
great deal to do with crack advance.

Physical insight into this problem is provided when one adopts the
point of view of the defect theorist, and addresses the fracture problem
in terms of sharp cracks and individual dislocations as singularities
interacting with one another through the means of the elastic medium. Qn
this view, the plastic zone is not a smeared out distribution of continuum
plastic strain (at least not at first), but a distribution of dislocations
created by discrete sources distributed in a random fashion. It ig impor-
tant to note that the source distribution is Very sparce on an atomic
scale in consonance with the findings of electron microscope studies of
plasticity in materials,

We suppose then for purposes of developing a simple model that a
mode IIT crack has been introduced into the medium, and a set of disloca-
tions is introduced by a sotirce in the immediate vicinity of the crack,
Expressions have been derived giving the force on the crack and on each

of the dislocations IR respectively,
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The force is given as a vector f in the complex plane on crack and dislo-
cation, respectively, K is the applied stress intensity factor, b is the
Burgers vector of a reference dislocation, and bj is the Burgers vector of
all other dislocations. Note that b has a sign and may be plus or minus
for the screw dislocations envisioned,which are at position ¢ in the
complex plane with the crack at the origin. Both crack and dislocations
are parallel to the x4 axis. The sum over j is a sum over the dislocation
distribution. £~ denotes a sum ovef all dislocations except that for
which the force is being calculated. k is a local stress intensity factor
for the crack, which is a shielded value relative to the external stress
intensity if the Burgers vectors have a positive sign. Negative Burgers
vectors denote antishielding dislocations.

Generally, sources of dislocations emit as many positive as negative
Burgers vectors (conservation of total Burgers vector), and if only one
sign predominates in a distribution, the remainder have disappeared at
some nearby surface--such as the crack surfaces. The antishielding dislo-
cations are in fact attracted to the crack, and one would expect a distri-
bution of dislocations to thus be composed of an excess of shielding
dislocations over antishielding ones.

In equilibrium, each defect will seek a position of total net force.
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That is, the elastic forces in (1) will be balanced by other lattice
forces, such as surface tension effects at the crack tip (Griffith's
relation) or Peierls forces, etc., at the dislocations. Thus

fC = 2y

Fy = opb (2)
v is the intrinsic surface tension of the open surface, while of is an
assumed friction stress acting on a dislocation. The general problem posed
cannot be solved, of course, when the number of dislocations is large, but
a variety of simple cases can be addressed, such as one dimensional dislo-
cation pileups, with various assumptions about ae and pileup geometry.

The simplest such problem is given by the one dimensional pileup of
a set of dislocations on the crack plane, with the nearest dislocation at

Xy=¢ and the furthest one at x1=d. When d>>c, this problem has a very

simple solution [3],
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B is the total integrated Burgers vector content of the dislocation distri-
bution, and oe has been assumed to be a constant in order to obtain the
solution. The second and third equations are the same as the BCS result [4]
for a crack and dislocation distribution. However, if c#o, the crack tip
has a lecal k associated with it, and the problem of the fracture criterion
is solved when k is set to the Griffith value, (2).

This solution of the problem is fundamentally satisfying, in the sense
that the properties of the crack tip and the local balance of forces on the

atoms at the tip determine (in conjunction with similar properties of the
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dislocation) the total configuration. This point becomes explicit when K
in the Tirst equation is written in terms of v, which shows that the
equilibrium, or critical K is in general a function of vy (a local property
of the sharp crack) and the plastic variables d and c. ¢ is important in
this picture, because choosing c>0 saves us from the Rice catastrophe. In
fact ¢ will be greater than zero provided o¢ is finite, and the total number
of dislocations is finite.

An illuminating second application is to assume the crack moves with
its dislocation shielding cloud with a uniform velocity, v. Two cases
emerge; in the first, a dislocation cloud of fixed number physically
moves with the crack, and in the second, the crack generates a cloud as
it translates from sources in the medium. We treat these cases in
sequence.

In case 1, the dislocations are assumed to obey a stress velocity
law v(o), which can be determined independently. In addition, the crack
itself obeys such a law, but in a first approximation, we shall take this
Taw to be a step function. That is, once the Griffith criterion is
reached, k2=4py, the crack moves at arbitrary velocity. With the assump-
tion of a one dimensional distribution, Eqn. (3) can be applied. We

rewrite these questions in the approximate form

k = Pog d e

K2 = 2ucf B

K2 = 8 0.2 d (4)
= ki

p is a numerical constant of order 1. When 9e is given in terms of the
velocity law of the dislocations, and B is predetermined, the problem is
soived. d and ¢ take the values as given. In particular, from the first
equation, ¢ fixes itself so that cf(v) and the critical value of k given

by the Griffith value are determined. That is, in order to achieve a state
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of uniform motion, the dislocations distribute themselves in such a way to
shield the inner crack so that its k(v) Taw is satisfied. This is achieved
merely by moving the first dislocation in the distribution closer or far-
ther from the crack tip. By elimination, then from Egn. (4) a K(v) law

can be obtained.

However, in reality, ¢ cannot be chosen arbitrarily. In particular,
the distribution in a real crystal will have dislocations on a variety of
slip planes--in general none of them coinciding exactly with the crack
plane. Thus, the closest any dislocation can come to the crack tip is
the distance to the nearest slip plane in the distribution, and a max imum
shielding value exists which the dislocations can provide. When the
external K is raised above this value, the excess K Jeaks through the
shielding cloud, to the core crack itself, and a discontinuous breakaway
ensues in which the core crack breaks away from its shielding dislocations
in a dramatic manner.

The overall conclusion is thus that a K(v) law will be a reasonably
continuous function during the shielding regime, dominated.by the of(v)
function of the shielding dislocations. At a critical value, however, the
crack breaks away from its shielding charge, and completely brittle cata-
strophic fracture ensues.

In the second case, space does not permit a full solution here, but a
similar breakaway phenomenon transpires for the same reason: the cutoff
in ¢ occasioned by the random byt sparce distribution of dislocation

sources does not allow arbitrarily large amounts of shielding.
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