THE USE AND THE LIMITATIONS OF C* IN CREEP CRACK GROWTH TESTING
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Within the framework of fracture mechanics, creep crack growth is
*

I Jand C . The idea is

that identical values of the appropriate load parameter in differently

described by macroscopic load parameters like K

shaped specimens or structures generate identical conditions of stress
near the crack tip so that the crack growth rates must be the same
provided that the material, the temperature and the chemical environment
near the crack tip are the same. If the right load parameter that unifies
the behavior of different specimens can be identified, one need not care
about the micromechanisms of creep crack growth (e.g. grain boundary
cavitation, corrosion). It suffices to measure the crack growth rate as a
function of the load parameter in the Taboratory, and to calculate the
value of the load parameter for the crack in the structure under consider-
ation. This gives the expected crack growth rate in future service.

The following discussion is grouped around the C*-approach which has
been applied successfully to many of the more ductile materials in the
past few years, e.g. [1-7]. Its theoretical basis and the rules for its
use are summarized. An attempt is made to identify some of the limitations
to the C*»approach caused by crack-tip blunting, elastic deformation,
instantaneous plasticity, transient creep and cavitation. The goal is to
establish a set of conditions for the applicability of C* and other load
parameters, quite in the spirit of the ASTM-rules for the validity of
Tinear elastic fracture mechanics or of J-controlled fracture testing.

I NONLINEAR VISCOUS MATERIALS AND THE USE OF ¢

The continuum-mechanical discussion is based on the constitutive
equations for equilibrium and compatibility
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VT.G. .= 0,

i3 + V.V g = V.V €. 4+ V.V ¢

TS TG = Y kS5 (1)
together with various material Taws. A material is called (generally
nonlinear) viscous if the strain rate is a unique function of the current
stress, éij = f (Oij)' Equation (1) 1is understood with the summation
convention for repeated indices, Vi is the gradient operator, and the
superposed dot denotes the time derivative.

It has long been recognized that nonlinear viscous materials are
analogous to the torresponding nonlinear elastic materials described by
Eij = f(“ij)* The constitutive equations for the two types of materials
are identical if strain and strain rate are exchanged. Therefore, if the
applied Toads are the same, also the stress fields in elastic and viscous
bodies are the same while strain and displacement in elastic materials
correspond to their time rates in viscous bodies.

In the present paper, we consider two-dimensional problems (plane
strain or plane stress). A planar crack with traction-free faces is
subjected to remote symmetric loading (Mode I)e Ifrisa path around the
Crack tip starting at an arbitrary peint on the lower crack face and
ending at an arbitrary point on the upper face, the integral

c*s [ < opinli/oxgds)  with " = [ 785464 (2)
is the creep analogue of Rice’s J~integral; dj is the displacement rate
field, Xy and Xo are Cartesian coordinates paraliel and normal to the
Plane of the crack, s is arc Tength and n; is the outward normal upit
vector on p. Since J is independent of the choice of the path, c* is also
path-independent. 1In principle, the value of ¢~ is measurable at the load
pins of a pair of spacimens which have slightly different crack lengths
but are otherwise identical [1] Using the analogy with J gives

¢ = - (a/2a)f Pdj (3)

where P is load per unit specimen thickness, A is the displacement rate at
the Tload pins and a is crack Tength. Alternative methods of determining
¢ win be described below for power-law viscous materials.

It is interesting to note that in viscous materials the stress  field
i5  independent of whether the crack is stationary or whether it grows.
Only the current specimen geometry determines the stress field.
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Power-Law Viscous Materials

*
The great practical advantage of a path-independent integral like ¢
is illustrated considering a power-law viscous material. Such a material
is characterized by

Sig = (/2) B g ol with o, = (301500.2) 102, (4)
where the prime denotes the deviator and % is the equivalent tensile
stress.  The material parameters B and n can he determined in uniaxial
creep tests. In this case, eq. (4) takes the form ¢ = Bo", which is known
as  Norton”s creep law. The multiaxial generalization (eq. 4) is based on
von Mises™ flow rule for incompressible materials.

In a power-Taw viscous material it can easily be verified by
insertion of eq. (5) below into the constitutive equations that, for
proportional loading P(t), the stress field is also proportional, i.e.,

Ojj(r-p t; P(t), a) = Gnet(t) Fjj(ri/a)v (5)

Here, for mere convenience the load has been replaced by the net section
stress et which is defined as 1oad divided by the area of the uncracked
ligament of the specimen. The dimensionless function Fij is a funcﬁion of
the spatial variables r; only but does not depend on the magnitude of the
toad. For self-similar specimen shapes the stress fields are also self-
similar so that Fij depends on the dimensionless ratio rifa only. (This
latter property is not confined to power-law viscous materials).

While the calculation of the stress distribution Fij in the whole
body generally requires numerical techniques, the asymptotic stress field
near the crack tip is analytically known from the analysis of power-law
elastic materials. Hutchinson [9], and Rice and Rosengren [10] (often
Jointly referred to as HRR) show that the stress field approaches

C  1/(n+1) .
713(rs9) = (75 /n*1) 5. (e

for r/a + o, (6)
independent of the outer specimen geometry. Here, r and ¢ are polar
coordinates centered at the crack tip with 8=0 directly ahead of the

crack. The dimensionless constant I, s chosen such that the maximum of

the dimensionless angular function 59 = (35%ja%j/2)1/2 is normalized to
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unity. Values of I and Gij(ﬂ) are given by HRR and subsequent workers.

The above equation (6) explicitly gives the near-tip stress field in
terms of (¥ which is measurable at the Toad pins of the specimen. This
illustrates that the conditions at the crack tip, and therefore crack
growth behavior in viscous materials, are determined by e rather than by
any other load parameter. This statement is the basis for the application

of ¢* to creep crack growth.
Determination of ¢* Based on Stress Analysis

The experimental determination of ¢* based on eq. (3) is often incon-
venient.  Therefore a few alternative equations will be given which are
based on explicit (most1y numerical) stress analyses of power-law mater-
ials. From the general form of the stress field (eq. 5), together with
the line-integral definition of ¢ (eq. 2) and the material Taw (eq. 4),
it follows that in a power-law viscous material C* must have the form

*
" = a8 o™l g (a,n) (7)

where the dimensionless quantity gl(a/w,n) is an abbreviation for the line
integral over the Fi.’s. Kumar et al [11] have evaluated these integrals
based on finite element solutions for various specimen geometries and
'a/wmratios where a s crack Tength and W is specimen width. Their
notation differs from eq. (7). For standard ASTM compact specimens, for
example, they express 9 as

9y = hy( Wa-1 )/( 1.455 , )™l (8)
The function h1 is tabulated for plane stress and plane strain while n is

given analytically. If in a creep crack growth test the Toad line deflect-

ion rate 4 is measured, it is advantageous to use the fact that 4 waﬁgget

with a geometry-dependent factor of proportionality which is also given by
Kumar et al [11]. Then eq. (7) can be written in one of the forms

¢” = gy(a/W,n) Sneth = gg(asi.n) 4(M41)/n;(4py1/m (9)

where 9, and g3 are related to the notation of Kumar et al through
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92 = (W/a-1) hy/( 1,456 nhg), gy = (Wa-1) hy/ny YL/ (10)

Musicco [8] gives plots of the dimensionless functions g, for several
specimen geometries.  When applying eq. (9) for the determination of ¢
one should make sure that the deflection rate 4 is caused mainly by creep
of  the material rather than by crack growth. Crack growth also
contributes to 4 because of the increasing elastic and instantaneous
plastic compliance of the specimen during crack growth. In many cases of
C*~contr011ed crack growth, creep is indeed the major contribution to a4,
A counter-example will be discussed in Section IV.

Besides the numerical solutions for various specimen geometries, also
approximate analytic solutions are available for the plane-strain crack
and the penny-shaped crack in an infinite body (He and Hutchinson [12]).
For a plane-strain crack which is subjected to the remote stresses 532 and
o?l normal and parallel, respectively, to the crack plane, the C*»integral
is approximately given by

*

€= a7 &2 (3u/8) /n (65,0002 (11)

Here, é: = B(a:)n, and gg’: /3'0;2-0Tﬂ /2 for plane strain. Compared with

numerical solutions, which are also developed in Ref. [12], the accuracy ‘

of eq. (11) decreases at higher values of g;z/cz and this occurs faster
for greater n. The formula is exact for all G;Z/og if n=l. For plane
strain tension (GTI = 9), eq.*(ll) is accurate to within a few per cent if
no= 5, Similarly, the ¢ -integral for the penny-shaped crack under
axisymmetric Teading is given by

*

C = a o &g (6/n) (143/m) 712 (45 =2 (12)

where 022 acts normal to the crack plane, qu acts radially and
g::[g§2*cT1[- This formula is again exact for n = 1 and remains approxim-
ately valid for all n if ggz/gggz. Note that uniaxial tension corresponds
to g§2/02= 1 and is therefore described accurately by eq. (12).

Crack Growth Behavior in Viscous Materials

So far, only the stress and strain distribution in cracked bodies has
been considered. The response of the crack (in terms of crack growth
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rate) to the applied driving force” B will, in practice, be determined
experimentally. It can also be treated theoretically provided that the
micromechanisms of crack extension are understood well enough. Very often
creep crack growth occurs by the coalescence of grain boundary cavities
with the main crack. Although the details of cavity nucleation and growth
are not yet perfectly clear it appears that in many instances failure by
cavity coalescence can be described approximately by a critical strain
criterion. This is supported by the empirical Monkman-~Grant rule which is
in essence a critical strain criterion. The most convincing explanation
for the applicability of a critical strain criterion appears to be Dyson”s
model of constrained diffusive cavity growth [13].

The success of a critical strain criterion for creep rupture suggests
to apply it to creep crack growth as well. We assume that during creep
crack growth the strain at some structural distance Xe ahead of the crack
tip must always be maintained at a constant, critical value, ece  This
assumption leads to an (integral) equation for the crack growth rate, a,
as will be shown. The formulation of the equation of motion follows the
method used by Riedel [14], whereas Ohji [2] formulates the same physical
problem in a discretized manner.

The stress field at a (stationary or moving) crack tip in a power-1aw
viscous material is given by eq. (6). The strain rate follows from the
stress through the material law, eq. (4). If the test has been started
with a crack of initial Tength a; in an initially unstrained material, the
strain at a distance Mg ahead of the current tip position is calculated
from the strain rate by time integration as

c 1 A 4 1) dar
el X )n/(n+ )+ B &2(0) é (- | n/(n+ ). ai s g 5]
a-ag+x, i InB(a+xC~a ) afa )

Here the time-differential has been replaced by da'/a(a') and the equality
of the strain ahead of the tip with the critical strain is required by the
critical strain criterion. The first term is the strain which has been
accumulated during the crack growth initiation time

By = (IBxo/e)™ (™) (a30(0)) (14)

which elapses until the critical strain is accumulated ahead of the still
stationary crack. The integral in eq. (13) represents the strain at the

current crack tip, which has been added during the crack growth period.
The integral extends over all prior crack tip positions. The linear,
Yolterra-type integral equation for the unknown quantity 1/a(a) can either
be  solved by the Laplace transformation method (which leads to a very
complicated analytic expression) or numerically (which only requires the
evaluation of a recurrence formula) or by etementary analytic methods for
small and large crack growth increments Aa=a—af. The complete numeric
sotution s given in Ref.[14]. The initial growth rate is found to be

éi=(l+1/n)xclti, while for large da/x. there results

(15)
. 1 1 %
PO ) ) 1ot gy, 101, R ]

Ee Sin(m) In

where a=n/(n+1) and r is the complete Gamma-function. The expresssion
involving the Gamma-functions has the numerical values 0.85, 0.95 and 1
for n =4, 7.5 and “s respectively. The results will be discussed
together with experimental observations below.

Comparison with Experiments

Figure 1 shows experimental results of Wagner and Riedel [15] on a
1%Cr1/29Mo steel at 535%C.  The crack growth rate is found to be an almost
unique function of C* whereas the stress intensity factor gives no reason-
able correlation. Further, the slope of the a(C*) relation in the doubly
logarithmic plot agrees with n/(n+l), which is predicted by eq. (15). The
temperature dependence is found to be small in the range 450 to 600°C, in
accord with eq. (15): the activation energy of power-law Creep enters into
eq. (15) through the material parameter B of Norton“s creep law. If this
activation energy is, say 270 kd/mole, the activation energy of the term
Bt(41) oo oty 30 ki/mole if n=8. Finally the dependence of & on ag
appears to be weak, hoth experimentally and theoretically, except for the
initial stages of crack growth. It should be noted that such a moderate
dependence is not necessarily obtained if a crack growth criterion is used
which is different from a critical strain criterion. For example, Riedel
[14] shows that a stronger dependence of the form g~aa"/ (n+l) obtains if
Tocal failure is controlled by unconstrained diffusive cavity growth. The
experimental results quoted above are representative for other studies on
various steels and Superalloys at higher temperatures, e.g. [1-7].
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Fig. 1. Crack growth rates in a 1Crl/2Mo steel at 5359C vs. Ky and C -
Stars: CTl-, squares: CT2-specimens. Arrows: Measurement near beginning
of test. Temperature dependence: factor 5 pbetween 450 and 600°C.

11 LIMITATIONS TO ¢ SET BY BLUNTING

Just as in time-independent fracture mechanics, crack-tip blunting
may be a limiting factor for the applicability of the respective fracture
parameters. We define the crack-tip opening displacement, s, whgre two
lines drawn through the apex of the crack profile inclined by 2307 to the
crack plane, intersect the crack profile. For a stationary crack, the
displacement associated with the HRR-field is [16]

‘ﬁe(")|(n+1)/n

1/n ~* (n+l)/n (16)
e — B Ct 5
In(tanBOO)I;n
where the numerical factor in parentheses is approximately equal to unity.
1f the time is taken as the initiation time for crack growth given in

n+l)/n, s s ip s -

eq. (14), there results §;= 450 Ec( ) Xe if n=7. The.cr1t1ca1 stra17 at
the crack tip, € Can be indirectly estimated by fitting the theoretical
crack growth rate (eg. 15) to experimental data. Usually e is  found in
this way to be of the order of one per cent in the highly triaxial field
ahead of a crack [15]. The structural distance x. is expected to be .of
the order of the cavity spacing (typically 3pm) so that the crack opening
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displacement at crack growth initiation is of the order of 10 ym.
By analogy with elastic-plastic fracture mechanics (ASTM E-813), the
condition for valid C*-testing in the presence of blunting is

(a, W-a) > 2M8., (17)

where the numerical factor M depends on the specimen geometry and on the
stress exponent n. For CT-specimens, M is typically of the order 25,
while for center-cracked panels in plane-strain tension, M = 200 is
representative. If 85 is as sTa11 as estimated above (10um), blunting is
not a serious limitation for C . After crack growth initiation, the
opening of the crack at the original crack tip position continues but the
current crack tip becomes sharper. This is observed experimentally and
predicted theoretically [14]. Therefore it appears that crack tip
blunting becomes even less important when the crack grows.

IT1. LIMITATIONS TO THE C"-APPROACH SET BY ELASTIC STRAINS -
APPLICABILITY OF KI

In alloys that are relatively creep resistant and exhibit relatively
rapid creep crack growth at a given temperature, crack extension may occur
unpder  predominantly  elastic  conditions. Predominantiy elastic
deformation, of course, invalidates the C*-approach, which is based on
viscous material behavior, and it makes the stress intensity factor KI the
proper load parameter as one may expect. The ranges of validity of the
two parameters have been delimited from each other by Riedel an Rice [16 .
They consider a stationary crack in an elastic/nonlinear viscous material
which is described by the material law

G5 = (149) Gfy/E + (1-2v) §y &5/ (3E) + (3/2) B oe”‘lc;j_ (18)
Here E is Young~s elasticity modulus, v is Poisson™s ratio, 61j is the
unit tensor and the last term describes Norton-type power-law creep.

If a Toad is applied suddenly to an elastic/nonlinear viscous body,
the instantaneous response is elastic. For short times after load
application, large creep strains have developed in an only small though
growing zone around the crack tip, while further away the straining is
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still predominantly elastic. Therefore the development of creep strains
and simultaneous stress relaxation near the crack tip can be analyzed
mathematically by prescribing the elastic singular field, oij(xKI/fF as
the remote boundary condition for the processes in the near-tip zone.
Thus, in the short-time Timit, the 1inear elastic stress intensity factor
KI determines the near-tip fields and therefore crack growth behavior. 1t
is related to the applied load by

Kp = /;Sﬂonetf(a/W) (19)

where the geometry-dependent, dimensionless function f(a/W) 1is tabulated
for many specimen geometries; for example by Rooke and Cartwright [17].

The relaxation of stress near the crack tip is analytically described
by the time-dependent, HRR-~type asymptotic stress field

K2(1-v2) /e V(e

"5 " e %13(0) el
where the dimensionless factor is o=1 within a few per cent accuracy [16].
Eg. (20) explicitly shows the dependence of the short-time stress field on
KI rather than on any other combination of crack length, specimen geometry
and load.

If, somewhat arbitrarily, a creep zone is defined as the zone within
which the equivalent creep strain exceeds the equivalent elastic strain,
the size of this zone is found to increase for short times according to

Fop = K2 (EBt)Z/("'l)Fcr(a) (21)
Finite element calculations [18] show that the dimensionless shape
function Fcr(e) has maximum values of 0.10 for plane strain and 0.20 for
plane stress if n=5. The shape resembles the plastic zone in elastic/
time-independent plastic materials,

After long times the creep zone has spread across the whole tigament,
the specimen creeps extensively and elastic strains become negligible
compared with the ever increasing creep strains. Therefore, in the
long-time Timit, the elastic/nonltinear viscous material behaves as if it
were purely nonlinear viscous and the stress fields are exactly those
discussed in Section I.
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The applicability of KI ends, and that of C* begins, when the creep
Zone becomes comparable in size with the crack length and 1igament width
or, in other words, when the stress field approaches its long-time limit.
Equating the short-time and Tong-time stress fields (eqs. 20 and 6) gives
the characteristic time

t1 = K 2(1-2)/[E(ne1)c") (22)

for the transition from the initial, elastically dominated to the final,
creep  dominated response of the cracked specimen. Although this
transition occurs gradually, finite element analyses of cracked specimens
show that the stress field can be described with good accuracy by using
the short-time solutions up to the time t1 and the Tong-time (nonlinear
viscous) solutions thereafter [18].

Therefore it is recommended to calculate the characteristic time when
creep crack growth tests are done. If the expected or actually measured
test duration exceeds £y, then C* should be employed. In the opposite
case, KI is the appropriate load parameter. Brittle materials with high
creep resistance and high crack growth rate, and large specimens tend to
fail under Ky~controlled conditions.

Experiments on KI~Contr0]]ed Crack Growth

An example for Ki-controlled creep crack growth is the nickel-base
alloy Nimonic 80A at 650°c. Wagner and Riedel [15] give B = 3.1034Pa‘n/s,
n=13 and £ = 170 GPa so that for a typical load on a CTl-specimen of 30
kN, the characterisific time is found to be t1 = 600 years, while failure
by creep crack growth occurs after a few weeks. Correspondingly, the
observed crack growth rates correlate better with KI than they do with C*-
On the other hand, for the tests on ferritic steel Guoted in Section I,
eq. (22) gives ty typically in the range of minutes to ﬁours, wfi)e the
tests lasted a few weeks. Hence, the good correlation of a with ¢ is not
surprising.

Another effect of elastic straining is that, other than in purely
viscous materials, the near- tip fields at growing cracks become different
from those at stationary cracks [19]. It is unlikely, however, that this
particular effect limits the applicability of ¢~ in practical cases
except, maybe, for high growth rates.
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{¥. LIMITATIONS TO THE ¢ -APPROACH SET BY INSTANTANEOUS PLASTICITY-
APPLICABILITY OF J

In relatively short-term tests the Toad level may be so high that the
specimen becomes fully plastic immediately upon 1oad application. We
assume that the response of the material can be described by a sum of
instantaneocus plastic strain rate and creep strain rate according to

ey = (32) B olN-2 6, o, + (3/2) B o) 9y (23)
where N is the hardening exponent, By= 0;-1/N/E if 6,70 (loading), B, = ©
if 6.0 (unloading), and 9, is yield stress. ' .
In such a material, the J-integral determines thi short-time
solutions whereas the long-time response is determined by C . For strong
strain hardening, i.e. if 1/N>n, the transition can be treated similarly

as in the elastic-nonlinear viscous case and the characteristic transition

time is found to be [20]
ty = 3/[(m1) €7 (24)

Both, C* and J, can be calculated using gq. (7); B and n must be replaced
by BO and 1/N in the case of‘J. ‘ ‘ ‘ e
Here we mention in pasi1ﬂg that trans1ent,. prTmary criep. may
1imit the validity of the C -approach. The Timitations of ¢ with respect
to transient material response have been discussed in Refs. [20,21] for
several constitutive models. Procedures for creep crack growth testing

nave been proposed for oronouncedly transient material response.

An Experimental Example for J-Controlled Creep Crack Growth

Saxena et al [22] have done creep crack growth tests on AISI 316
staintess steel at 594°C at relatively high Tload levels so that the
specimens became fully plastic directly upon load application. 5The{/Na1so

21p,,-8 R . B . d
give the material parameters B = 3.10°*Pa""/s, n = 8, BO ? 10”Pa , an
N = 0.53. They did their tests on single~edge-notched tension specimens.

For a crack length a = 18.8mm, a/W = .37 and for a load corresponding to

- 192 MPa, the transition time is found to be tp = 200n. Typical test

g
net
durations in this study were less than, or of the same order as t2 so that
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the specimens spent at lTeast most their life time in the J-controlled,
short-time Tlimit. In accord with this, Saxena et al [22] report peor
correlation of the crack growth rate with ¢* but good correlation with dJ.
The dominance of short-time plasticity in these experiments has also
be proven experimentally. The deflection rate of the load line during
crack growth has been compared with the deflection rate of specimens that
were identical except that they contained a rounded notch rather than a
growing crack. It turned out that the deflection rate was by a factor of
3 to 13 smaller in the notched specimens than in the cracked specimens.
This means that the response of the cracked specimen was determined
primarily by short-time plasticity due to the increasing plastic
compliance during crack growth. Then J rather than C* is likely to be the
appropriate load parameter. The measurement of C* using eq. (9) is then
meaningless since A in this equation 1is meant to originate from
steady~state creep deformation rather than from crack extension.

V. LIMITATIONS TO ¢* SET BY CAVITATION

Since the effect of grain boundary cavitation on the stress field is
not included in the nonlinear viscous description of the material, the
C*«approach might be invalidated by profuse cavitation of the whole
ligament. It will be argued, however, that ¢* need not necessarily be
abandoned if grain boundary cavitation occurs by the creep-constrained
void growth mechanism proposed by Dyson [13].

In the 1limit of fully developed polycrystalline constraint the
cavitating grain facets transmit practically no tractions and therefore
behave 1ike microcracks. Hutchinson [23] shows that macroscopically (on a
scale large compared with the grain size), such a cavitating material
responds in a compressible, power-law viscous manner. Obviously, C* is
then path-independent. It can be determined from eqs. (7-9), but the
geometrical functions 91> 9 and g3 are now different from what 1is known
for incompressible, non-cavitating material behavior. However, the error
is not expected to be great if the form C*=gzoneté is employed with 9 for
incompressible material. This conjecture should be checked by finite
element analysis using Hutchinson™s constitutive equation for a cavitating
viscous solid.

If cavitation is confined to a small zone around the crack tip
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(“small-scale cavitation™) while the bulk of the specimen obeys Norton~s
creep law (eq. 4}, c* is also a valid parameter, since a  small
cavitational zone is completely encompassed and controlled by the
HRR-field (eq. 6). Further, Hutchinson [23] surmises, and this is
supported by experience with related problems [16], that the C*~integral
is approximately path-independent throughout the whole range of distances
from the crack tip including the near-tip field where cavitation is
prevalent and the far field where cavitation is negligible.  This
conjecture needs numerical verification.

In summary, the foregoing arguments suggest that ¢ might be an
appropriate load parameter for the whole range from small-scale cavitation
to extensive cavitation across the whole Tigament. Of course, this can
only be considered as a preliminary conclusion since Hutchinson™s model
[23] is an idealization which describes the limiting case of creep-
constrained cavity growth but disregards other possibilities.

VI. CONCLUSIONS

The theoretical basis for C*—testing has been described and the
relevant  formulas  for its use have been compiled. The observed
dependences of the crack growth rate a on C*, on temperature and on the
crack growth increment, ba, have been explained on the basis of a critical
strain criterion for crack growth. Limitations to the C**approach that
may arise from several sources have been discussed:

(1) The calculation of a based on local failure criteria near the
crack tip shows that, even if C* determines the crack-tip fields, the
crack growth rate may depend also on Aa so that the dependence on C* is
not unique. Fortunately, it turns out that the dependence on 43 is
moderate if the crack grows subject to a critical strain criterion.

(2) The limitation to C" by crack tip blunting has been formulated.
A numerical estimate suggests that blunting is not a serious limitation
except for very ductile materials and for center-crack geometries in
plane-strain tension.

(3) Predominantly elastic specimen response requires the use of KI
and offsets the applicability of C*. Quantitatively, a decision between
KI and C* can be made by comparing the test duration with the
characterisitic time tl for the transition from the Ki-dominated limit to
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the C*udominated Timit. The condition for the applicability of KI can
also be expressed by the requirement that the calculated creep zone size
must be small compared with the crack length and ligament width. In many
practical cases, when gross  plastic deformation of the specimen accom-
panies crack growth, it is immediately obvious that KI cannot be applied.

(4) In terms of the characteristic time tys the validity of ¢ has
been delimited against that of J in cases where the specimen becomes fully
plastic immediately upon Toad application. As for the effects of primary
creep the reader is referred to Refs. [20,21].

(5) If grain boundary cavitation occurs by the Ccreep-constrained
mechanism, cavitation might have a surprisingly small effect in terms of
setting limitations to the C*uapproach.
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