DISLOCATION-SHIELDING ANALYSIS OF A BLUNT-NOTCHED BRITTLE CRACK
EMBEDDED IN A DUCTILE MATERIAL
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A fracture model of a blunt-notched brittle crack embedded in a
plastically deformed ductile medium is developed. An elastic enclave
‘parates the notched tip from the plastic zone that is generated by the
dislocations created within this zone. Effects of the notch-root radius
and material parameters on the fracture toughness are predicted. The pre-

dicted fracture toughness is consistent with experimental observations.

1. Introduction

Fracture initiation and propagation from blunt notches have been the
object of numerous theoretical and experimental studies [1-4]. So far, all
the proposed fracture criteria are based on the critical stress or strain,
either at a point or acting over a characteristic distance related to
metallurgical microstructures such as grain size and inclusion spacing.

Recently Thomson [5] and Weertman [6] have developed elastic enclave
wodels and predicted the apparent fracture toughness of materials. The
dislocation shielded sharp crack models have since been examined by others
{7-11].

The purpose of this paper is to extend the general idea of a dislocation
shielded sharp crack to investigate the fracture behavior of a notched
brittle crack embedded in a plastically deformed ductile medium. In the
following sections, first the stress distribution and the intrinsic toughness
of the core notched crack are derived; then the stress distribution in the
plastic zone is examined; finally a self-consistent method is used to
derive the apparent fracture toughness as a function of the notch root
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radius and material parameters.

2. Stress Distribution of a Blunt-Notched Brittle Crack
Shielded by a Plastic Zone

Following the suggestion of Thomson [5], the dislocation density in
the vicinity of the notch root is low enough such that an elastic enclave
zone always exists between the notch tip and the plastic zone.

2.1 The elastic enclave zone. The stress distribution at the notch
region is estimated by Inglis stress solution of an elliptic crack [12] in
an infinitely wide piate. The notch root radius, ps is related to the
elliptical notch of minor axis b and major axis a by p=b?/a, provided the
notch is sharp but the tip radius is finite. The stress normal to the
crack plane, o, is

= 2Kt +r

O B sl
v/;r“ (p+2r)3/2

(1)

where r is the distance measured from the notched tip and Kt is the stress
intensity factor at the crack tip, defined by

K = oy (ra)/2

(2)

Here o is the stress applied to the notch. From Eqn. [1] the maximum

notch tip stress, defined by O = (O)r:o’ is

“max ~ ZKt//?E" (3)
The intrinsic stress intensity factor at fracture is determined when -
reaches the theoretical strengths for materials, T =u(Ey/a0)1/2. Then
from Eqn. [3] and o2= 25 we have

K;z = 2Evp/a (4)
where a, is the lattice parameter, E is Young's modulus, and vy is a the
surface energy. In Orowan's estimation of Tih [131, a=1, however, Eqn. [4]
predicts the intrinsic toughness of a blunt-notched core crack as a function
of the notch root radius and material parameters. When ¢ goes to the Timit,

i.e., PTA . Egn. [4] reduces to the Griffith result [14],

952

2.2 The plastic zone. The stress o and strain e fields generated in
“he plastic zone are estimated by a notch in a strain hardening material of
the form

;= e ) : 5

u co(e/uo) > £>8, (5)
dwre n s the work hardening coefficient, € is the yield strain, and %,
¢ the yield stress.

The strain distribution is written as

* enax f(nsr/p) (6)

whora ©max is the maximum notch tip strain and f is a dimensioniess function

of n and the normalized distance r/p. Here f is a pesitive number and

wiereases to unity as r/p reduces to Zero. Rice [15] found
1

. =P . Tin .
Bogy = Cntc [Bn J/aosgp} {(7)
= (nt1/2) (n+3/2) 1 (n+1/2) (8)
n r72) T nF
shere J is the well known J-integral and r{...) is the gamma function. It
o be shown By = 15/8, ¢, = (+Z2)1/2 s0q £(1,0/0) = o 1/2 (p+r)/ (p+2r)3/2,

provided Egqns. [1], [4] and [5-8] are combined properly at the limit n=1.
in the caleulation of C] and the determination of f(1.v/p), we have used
whe relation between J and K,

- K
i=f (9)

3. Fracture Toughness
The fracture toughness is obtained in a self-consistent way: the
‘racture stress, Ues generated at the inner elastic-plastic boundary, Rc’

v the elastic core crack must be the same 2s the stress generated at RC

lained from the combined external stress and the dislocation field,

srovided the stress distribution at the core crack region is dominated

by the K field. From Eqn. [17, we have

“f (R)=__"% (D+RC)/(p+2RC)3/2 (10)
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From Eqns. [5], [6], and {71, we obtain

(1)

[10] and [11] to eliminate Uf(Rc)’ we have the fracture

1+ n
oe (RC)/GO = (Bn J/ooeop)n/ B [Cnf(p/RC)]
By combining Egns.

toughness predicted by the expression

1+n
g = 0% 2, o (R :l “n (12)
Bn[cnf(n,RC/p)]]+n _f % % (p+2R )3
Using Eqn. [9], [12] becomes
B 1+n
_— +R AL
KZ - 00(] V )p § o LEZ (p C) 2n (]3)
BaLCaf(maR/0)1T™™ |7 85 og% (Lig )3

4. Discussion
The results show that the equation for the apparent fracture toughness
has the correct quantitative dependence on the physical parameters, n, vy,

o, and p.

5 Equation [13] indicates K2 is increased with the larger notch

root radius. This is consistent with experimental observations [1]. The
fracture toughness is proportional to the surface energy of the solid raised
to a power characterized by the work hardening coefficient. Likewise,
increasing the yield stress decreases the toughness. As n=1, using the
results for B], C] and f(r/p,1), presented in section 2.2, Egn. [13] reduces
to intrinsic toughness, shown in Egn. [4].

We emphasize that Eqn. [13] is quite general by showing when p goes to
the sharp crack timit, i.e., RC>>p=a0, (13) shall reduce to the fracture
toughness of a sharp crack embedded in a ductile material, found by
Thomson [57.

The well known HRR singularity [16,17] has the strain distribution
1

£% g

2p) TH0 (14
o (EJIGO r) o

i

where a
n

is a constant.

H

Comparing Eqns. [6] and [14], we have
.
e T+n
f {r/o,n) = = (o/r) (15)

B 1+n

substituting [15] into [13] and setting a ~p<<RC, we then have Thomson's

sult for fracture toughness

(16)
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