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This paper aims to investigate energy release rates (G) that accompan,
with diffusive crack growth. Crack-like cavities at grain boundaries are
frequently observed in creep ruptured specimens of crystalline solids.
Their growth can be attributed to a mechanism involving coupled crack
surface and grain-boundary self-diffusion. Chuang et a].[]] reviewed the
subject of diffusive cavitation along grain interfaces and gave the condi-
tions under which the growth of crack-like cavities prevails. In general,
creep cavities favor crack-like (slit) shapes when the ratios of applied
stress to capillary stress and grain-boundary diffusivity to surface
diffusivity are high (say >>1) and when the service time approaches the
later stage in the growth phase. Under these circumstances, the crack
travels in a steady-state fashion at a moderate velocity along the grain
boundary. It is then appropriate to treat the crack as a semi-infinite,
growing at a constant speed in an infinite elastic bicrystal under piane-
strain conditions. This case has been considered by Chuangiz] who solved
the coupled problem of diffusion and elastic deformation leading to a
specific kinetic law for subcritical crack growth. The present paper
attempts to perform the analysis of G thoroughly.

DERIVATION OF THE ENERGY-RELEASE RATE

The conventional energy-release rate G is defined by v G = — dF/dt

=W«(ﬂ/dt)j‘; W dv

diffusion. Here ¥ is crack growth rate, P is the total potential energy,

for a class of elastic-brittle cracks without

and w=w(x,y) is the strain energy density. For a sake of consistency we

extend this definition to the case of diffusional crack growth by writing
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Wi o= W—ﬁv since the time rate of strain energy is identical to that of

ine Helmholtz free energy for isothermal processes. Here FV represents the
total bulk free energy stored in the interior of the body; it relates to

£ by F"&FV+FS where FS is the free surface energy associated with cavities
and interfaces. Thus we have G = ﬁs+wdis’ since sz“wdis from the first
taw of thermodynamics. This is justified for the special case of diffusive
crack growth in an elastic-brittle material since under creep conditions
wheve the sustained loads are relatively low, the dissipative work generated
from dislocation motion can be justifiably nelgected. Accordingly, the
total dissipative work in diffusional crack growth is predominantly produced
hy matter transport notably along the high diffusivity paths at internal
void surfaces and grain interfaces. This means that the contribution to

Hiis by bulk diffusion could also be ignored unless the temperature approach-

P i i | P o ‘gb | = = s ;
25 the melting point. Thus wdis wdis + wdis and because wdis_ TS=ST-(-IH)uv
the expression for G becomes
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where ngs =2 f Js - (-V¥s)ds and wg];’ =f£b “f- IMp) dx

are the dissipative work generated per unit time at the crack surfaces and
+long the grain boundary (g.b)., respectively.
As in the case of Griffith cracks, ?S due to steady state crack growth

along a grain boundary is simply

E:“U(Zb}"gb),vér@ (2)

where ¥, and ib are the free energy per unit area of crack surface and
q.b., respectively; GGr is the Griffith energy.

Sis and WI:2e, the Formulation of J and M must be

To evaluate W
determined first. This is given in Ref. [3]. Substitution of these

expressions in Egqn. (1) and after some tedious mathematical manipulations,

the final results are{4]
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where 2h is the crack thickness, Oyy grain boundary normal stress and &
Ay e .
the opening displacement, é(x)i§ wWW-ul)  (see Fig. 1 below)
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Fig. 1. Diffusive crack growth along a boundary. Normal stress yy(x) and
opening displacement (x) distributions are shown schematically.

Substituting Egqns. (2-4) into Egqn. (1), one obtains
h o 28 s 38
G =£wdy “/'V[ wiix)dx ——[ %, (5% )dx (5)
This is a general expression for Irwin's energy release rate for diffusional

cracks in a general elastic solid. We note that in the absence of diffu-

& s
sion, 8= ¢ and & {{Wdy becomes the strain-energy release rate appearing

in conventional fracture mechanics theory. It can be seen that G consists
of three terms: (1) the loss of strain energy of material that is removed
from the crack surface; (2) the gain of strain energy by stressing the
deposited matter at the g.b. to a proper level so as to ensure a coherent
fit; and (3) the mechanical work done by normal stresses on opening up the
g.b. to allow insertion of the matter that has diffused away from the crack
surfaces. It is also of interest to note that an alternative approach from

the theory of elasticity can be adopted to derive G and the end results are
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identical to Eqn. (5). Further, G can be shown to be exactly identical to
the well known Jnintegra1[5] as in the case of linear elastic fracture
mechanics, if one takes finite deformation into consideration. The complete
proef is given in Ref. [4].

In order to further investigate each individual component contributing
Lo G, the curvature at the crack tip, stress and strain energy distributions
have to be determined. (See Egns. (3) and (4)). Unfortunately, no solu-
tions are available in the general case. We therefore focus our attention
to the 1inear case where solutions are readily available. In this special
case the diffusion equations follow Fick's law and take the form of Je=e 7uL,
Also the stress-strain relations follow Hooke's law, so the strain energy
function takes quadratic form in stress. Further, the strain energy contri-
bution to M (and hence to G) can he ignored even at the crack tip[3].
Actual stress solutions given by Chuang[ZJ confirm this assertion. Thus
the versions of Eqns. (3-5) in the linear case take the following forms

Weilu = 2h ¥ Key = ( 20, - ¥3)

(6a)
\ 24
Wity = -2hi iy, = 75, (35> dx o
and -
G = 7=~ 76, (95/nx ydx -

Chuang and Rice[ﬁj have solved the entire crack tip profile both
aumerically and in closed form. The results indicate that approximately
the following relation hold between Ktip and 2n: Jg,, = 7% (1= %/y )
Substituting this into Eqn. (6a) we find &@1 & d?g, (independent of V).

%S' according to Eqn. (6b), the %, and & along the g.b.

To compute Wg
must be found in addition to Ktip‘ The control equations were derived from
the requirements that matter be conserved and Fick's law be satisfied along
g.b., and that the stress and strain fields in the interior satisfy the

equilibrium and compatibility conditions, respectively, and also satisfy
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boundary conditions at the crack plane and at the outer boundaries where the
sustained loads are prescribed. The solutions are given in Ref. [2]. It
was shown there that a g.b. parameter L exists, where L has a dimension of
Tength and is a function of material properties, T and Y, such that the
size of the diffusion zone is confined to within 4L ahead of the moving
crack tip wherein the influence of diffusion is significant. The resulting
small diffusion zone implies that the applied K is able to control the crack
growth behavior. Mathematically, this is analogous to the small cohesive
zone in the Dugdale-Barenblatt model or small-scale yielding zone in the
linear elastic fracture mechanics. Hence there is a one-to-one correlation

between K and v for ¥ 2 Y , whereikﬁn is a material constant, thus
he 2

G /g, = 014 [ (Vv Tt (v o ST (7)
The main features of the energy release rate that occurs during diffusive
growth of a sharp crack can be unveiled if we plot nondimensional G vs
from Eqn. (7) as illustrated in Fig. 2 where the three components of G
are shown for an arbitrary velecity. For example, at the threshold point
where ¥ = Ugs an amount of energy 0.85 GGr goes to disspative work in
the grain boundary whereas 1.0 GGr each is spent on ?S/v as well as on
surface diffusion. For a higher crack velocity corresponding to a higher
applied load, the first part increases following the curve while the last
two parts remain fixed. However, when ¥ < Vmn , there is insufficient
energy available to move the crack tip and, as a result, the crack will
cease to grow.
CONCLUSTON

The energy release rates of diffusional crack growth were derived in a
general elastic solid. The strain energy contribution is included in the
formulation. This expression is valid even if the material is nonlinear,
and consisted of Griffith energy and heat generation in the mass transport

process.
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Field solutions in linear case indicate that heat generated in surface
diffusion is & 1.0G, (regardless of w) and that in g.b. diffusion is
increasing with increasing ¥ from a minimum of 0.85 GGr‘
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¥ig. 2. Plot of normalized energy release rate vs. normalized crack growth
rate (Egn. (7)).
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