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INTRODUCTION

According to Elber's concept [1], the residual plastic stretch left
in the wake of a steadily advancing fatigue crack interacts with the plas~-
tic zone ahead of the crack tip and causes plasticity induced crack clo-
sure above zero lcad. On the other hand, a saw cut crack or a fatigue
pre-crack where the previous fatigue loading effect can be considered neg-
iligible compared with the following monotonic load is defined as an ideal
crack. Figure 1 shows three loadings, where Kl and K2 are the stress in-~
tensity factors corresponding to the monotonic load and the fatigue pre~
crack load, respectively; (a) is the loading for the fatigue crack (K1 =
Kz), (c) is the loading for the ideal crack (K1 >> Kz) and (b) is the
loading between (a) and (c) (K1 > KZ)' As the value of Kl/K2 increases
from one to infinite, a transition from the fatigue crack to the ideal
crack occurs.

It has been cbserved that a sudden increase in the level of loading,
such as a single peak overload, for the crack under constant amplitude
cyclic load has a large influence on the crack growth rate. This behav-
ior cof crack growth acceleration
and retardation has been ex- K1
plained on the basis of crack
closure [1]. The crack growth Ky
acceleration during the single K,

peak overload vesults from the

transition from the fatigue t t t
crack to the ideal crack. (a) (b) (c)
In this work, the compar- Fig. 1 Tramsition (b) from fatigue

ison of the fatigue crack and crack {a) to ideal crack (c).
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slape-strain condition has
soen found [3], where €. is a

witeyial constant for a given

titizue crack and the ideal

fip plastic stretches in fa-

the ideal crack is made with a special attention to plasticity induced

crack closure. Using this result, a simple model to predict thetransi-

tion from the fatigue crack to the ideal crack is proposed. It is shown

that the model gives a fairly good prediction of acceleration.

COMPARISON OF FATIGUE AND IDFAL CRACKS

1

Crack extensions, Aaq, on the fracture surfaces corresponding to the

inadings in Fig. 1 (a), (b) and (c¢) could be identified fractographically

#8 a striation, a giant striation and a sub-critical stretched zone, re-

spactively. For the ideal crack, a relation between the sub-critical

stretched zone width, SZW, and the monotonic stress intensity factor, Ks

¢r the monotonic J-integral, J, of the form

= 0 12
SZW = C/K €8]
in the small scale yielding (SSY) case or
= ~ 2
SZW = C EI/(L - v2) (2)

in the large scale yielding (LSY) case under plane-strain conditions has

been found [2], where Cl is a material constant, E is Young's modulus and

» is Poisson's ratio. Equation (1) or Eq. (2) presents a blunting line

it the fracture toughness test. On the other hand, for the fatigue crack

>
+ relation between the stria-

ton spacing, S, and the max- -~
imam stress intensity factor,
v OF the form

= 2 ;
S CZKmax 3
5 the SSY case under the

2

tress ratio, R, value.

The comparison of the

rack is shown in Fig., 2

=

bore A8 and 50 are the crack

sue crack growth and ideal (a) (b)

ik growth, respectively, Fig. 2 Comparison of fatigue crack (a) and

s the crack tip ideal crack (b) for a given K
max
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blunting angle under loading and is assumed to have a same value. On the

assumption that K = Kmax for a given material, the ratio of AS to 60 be-

comes the ratio of Eq. (3) to Eq. (1) and is reduced to the following ex-
pression.

(A8/8 = (s/szw)K = Cz/cl (4)
max max

The values of CZ/C1 for alloy steels, aluminum alloys and a Ti-6A1-4V in

O)K

the case that R = 0 become as shown in Table 1 [2, 3]. The mean values
of C2/Cl is about 0.13.

A vecent analytic study on the steadily advancing fatigue crack
under the assumption of SSY according to the ideally-plastic Dugdale-
Barenbratt model has shown the following result [4]

(a8/s = A[(Kmax - Kop)/Kmeu«:]2 = A(Keff/Kmax)2 %)

O)K
max
where KOp is the opening stress intensity factor, Keff is the effective
Stress intensity factor and A is about 3/4.
From Eq. (4) and Eq. (5), the values of Kop/Kmax can be directly
predicted as follows.

I 1/2
Kop/Kmax = 1 = [(C,/C)/A] ©)

On the assumption that A = 3/4, the values of Kop/Kmax for the various

materials become as shown in Table 1 and show the structure-insensitive

property. The mean value of K_ /K

op’ "max
is about 0.58. The experimentally de- Table 1 Values of flow stress,
termined values of Kop/Kmax are some- Oggs C2/C1 and Kop/Kmax
what smaller than the predicted ones. for various materials.
Such differences are thought to arise ofs  Cy/C, Kapﬂﬁux
mainly from ambiguity for definitions MPa
of the crack opening as well as possi- 104 496 0.11 0.62
5 A5338-1 588 0.12 0.60
ble experimental accuracy [3]: 4320 1068 013 0 57
10B35 (873 K) 755
(673 K) 1362 0.09 0.64
PREDICTION OF TRANSITION (473 K) 1744
Average 0.12 0.61
When the single peak overload ( 2017-T3 384 0.18 0.50
. 5 . 2024-73 411 0.15 0.56
the peak stress intensity factor is K1 5083-0 217 0.20 0.49
) is applied to the constant amplitude ;ggi}g gg{ 8:%2 gzgg
cyclic load (the maximum stress inten-~ Po— 018 0.52
: - K .
sity factor Kma.x 2), as shown in TERloal 75 o g
Fig. 3 (a), K, can be divided into two
1 Total average 0.13 0.58

components: KZ for the striation for-

714

smation and (Kl - K2) for the sub-critical stretched zone formation [5 ~ 8],
‘hen, the crack tip plastic stretch, A62 + 61, formed by the single peak
cverioad is
B8y + 8 = A(K, - K0p2)2 + (K2 - K,%) (7
where KopZ is the opening stress intensity factor.
On the other hand, the crack tip plastic stretch, Aél, formed by the
wonstant amplitude cyclic load for the case that Kmax = Kl is
A8y = ACK - Kopl)z (8)
whore Kopl is the opening stress intensity factor, as shown in Fig. 3 (b).
The ratio of Eq. (7) to Eq. (8), o, can be defined as a fatigue
crack growth acceleration factor during the single peak overload for a

given Kl value and a given R value.
- 2 2 2
. AS, + 8, ) A(KZ Kopz) + (K1 - K2 )
to (*_u7§§;.—JK1 ) ACK 2 ©
Ky - Kopl)

fhe value of Kop/Kmax becomes a constant in the S8Y case for a given R val-

Kop/Kmax = Kopl/Kl = KopZ/KZ {(10)
then, the value of « is given by the following expression
ACL -~ K /K 32 5 42 o
_ op’ "max
o = (11)

~ 2
A[(1 Kop/KmaX)Y]

where

Y = K /K, (i2)
is the overload ratio.
Equation (11) does not hold true in the LSY case and may be rewrit-

ten using Eq. (2), over a range from the SSY case to the LSY case. And it
takes the form

— K2

KUpE

(a) (b)
Fig. 3 Comparison of single peak over load (a2) and constant
amplitude cyclic load (b) for a given Kl'
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o JCglCy2Ty + Wy -3y
- (©,7c)7;
where J1 is the experimentally determined J-integral corresponding to the

(13)

single peak overload and
J, = (1 - VZ)KZZ/E . (14)

COMPARISON OF PREDICTIONS AND EXPERIMENTS

The value of o can be determined experimentally as the ratio of the
giant striation spacing, GS, formed by the single peak overload to the
striation spacing, S, formed by the constant amplitude cyclic load for a
given K1 or J1 value and a given R value.

o = (GS/S)Kl oF Jl (15)
The values of (GS/S)K1 or Jj ©n two aluminum alloys, 2017-T3 and 5083-0,
and a Ti-6A1-4V alloy have been examined quantitatively by the authors [8].
The comparison of predictions and experiments for the three alloys
in the case that R = 0 is shown in Fig. 4; (a) and (b) present the results
under the assumptions of SSY and LSY, respectively. Figure 5 also shows
the comparison of predictions and experiments for the 2017-T3 alloy in the
case that R = 0.4. Equation (11) and Eq. (13) give fairly good predic-
tions for the two R values. The latter is especially useful for quantita-

tive evaluation in the LSY case.

e Ti-BAl-4Y
— 2017
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Fig. 4 Comparison of predictions (lines) and experiments (symbols)
for three alloys under the assumptions of SSY (a) and LSY (b).
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The fatigue pre-crack requirement

3 . 1
in the fracture toughness test is given OF 2017
by the following equation {9, 10]. L 2 o
wn
Ke < 0.6[EJ/(1 - v2)]1/2 ae 2 . .
where Ko is the maximum stress intensity = B Kiim?
factor at fatigue pre-cracking and can ’;5’5_ 2 gfz
be converted into T by Eq. (14). Upon g 087
0
e o« : 5 9o ® Open K
the substitutions of J2 and J1 for Jf Solid
and J, respectively, Eq. (16) becomes as 1 : R

follows. 0

Jl/J2 > 2.8 (17)
As shown by Fig. 4, Eq. (17) prescribes Fig. 5 Comparison of predic-

5
(Ky/ Ko7, Jildy

it reasonable range for the ideal crack tions (line) and experi-

from the engineering viewpoint. ments (symbols) for
2017-T3 in the case

CONCLUSION that R = 0.4,

The comparison of the fatigue crack and the ideal crack is made
#ith a special attention to plasticity induced crack closure. Using
this result, a simple model to predict the transition from the fatigue
crack to the ideal crack is proposed. It is shown that the model gives
a fairly good prediction of the crack growth acceleration during the sin-

gle peak overload.
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