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1. Introduction

fhe body force method was originally proposed by H. Nisitani in 1967[1] as
soversatile method of numerical stress analysis. The method has been applied to
various notch[1-6] and crack problems[7-23]. In the early stage of the progress
uf the method, it was mainly applied to plane problems. Recently, various
smportant three-dimensional problems have been solved by the method[11, 15-23].

Although the basic concept of the body force method is analog to the method
ot Green's function (so-called B.E.M.), the important difference between the
budy force method and B.E.M. is that a unique idea of the body force density in
noteh problems and the density of the pair of body force in crack problems is
introduced in the body force method. This idea enables one to obtain very
accurate solutions. This is the reason why the body force method has both
“ersatility and high accuracy.

In the present paper, first the hasic concept of the method and the unique
dea of the density of the pair of body force will be explained and then,
several numerical solutions for crack problems, i.e. stress intensity factors
w111 be shown.

2. Principle of the body force method

First of all, the solutions of an elliptic hole will be explained, because
a crack is the limiting shape of a slender ellipse and therefore, the basic
?x?ression for crack problems is obtained from the solution of an elliptic hole
Ll

Figure 1(a) shows an elliptic hole in uniformly stressed infinite plate.
this problems can be solved by distributing point force continuously along the
imagined ellipse in an infinite plate without any hole as shown in Fig. 1{(b).
the boundary conditions along the elliptic hole are completely satisfied as the
result of the superposition of the stress fields due to uniform tension and
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body force (continuously distributed point force), if the densities of body
force have the following values in plane stress condition,

©

a
a
D = e -~ —
e =02 {1 v(l+2b)} (1a)
wa a
B = {(1+2-)-v} 1b
¥ 1-y2 b ) {v: Poisson's ratio) (38)
The definitions of the densities of body force in Eq(1a) and (1b) are given by
dF, F
o =ox o =y (2)
x dn 5 ¥ dg

where dF_ and dF, denote the x- and y-components, respectively, of the body
force of the element gs - /(def + (dn)? of the imaginary ellipse: £2/a” +n2/b2 =1.
The densities of body force for a crack (Fig. 2) are obtained as the limiting
expression for £q. (la) and (ib), as b~+0, i.e. as the ellipse reduces to the
crack. However, both o and p_ become unbounded as b0, the direct introduction
of these quantities to®*crack groblem is inadequate. In order to rescive this
difficulty, the body force acting on the upper and lower part of the imaginary
ellipse (Fig. 1(b)) is treated as a pair. Thus, the stress g due to the pair of
the body force is given by the equation

BQP BgQ )
§=J—a—§—— ,P=1-2noxd§ i J—é?f . 2no, dE (3)
np, = 2 : =-4Oym 2 - g2 4)
e, oz Vet - € 2ne_ = i E (

s

where, o and o? are Green's function for the point force P and Q in x and y
direction, respectively.

As understood from the above discussion, the stress field induced by the
body force in crack problems is characterized by the pair of body force and the
derivatives of stress field due to body force, i.e. the derivatives of Green's
function. The same characteristics are introduced also in three-dimensional
crack problems, though only the expressions corresponding to £q. (3) and (4)
are changed.

The densities of body force for simple problems 1ike Fig. 1(a) and Fig. 2
can be found in closed form. However, in general, weighting function f(E) must
be multiplied to the basic expression of the pair of body force (Eq. (4)),
because the densities of body force like Eq. (4) are insufficient to satisfy the
boundary conditions that are different from Fig. 1{a). Since it is difficult to
determine weighting functions in closed form in general problems, numerical
analysis is used. The important characteristics of the body force method is to
assume the expression for the pair of body force in crack problems as f(E)/a2~E2

where in general, weighting functions f(E) vary slightly within the defined area.

In numerical analysis, the part of imaginary crack is divided into finite
divisions N and the boundary conditions are satistied at collocated points with
regard to stress or within divisions with regard to resultant forces.
Subsequently, discrete values of weighting functions are determined. However,
considering that the numerical results for the systematic increase in the
division number N vary systematically, we can obtain very accurate values by
extrapolation procedure, i.e. N+w. Stress intensity factors are determined
from the values of the weighting function at crack tip.

Although based on the body force method, all problems can be solved in
principle by using Green's function for an infinite or a semi-infinite plate,
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thie use of Green's function for an infinite plate containing a traction-free
crack or hole makes sometimes the method much more effective[10, 13, 14].

3. Basic expressions for the pair of body force

in performing numerical analysis, the basic pairs of body force multiplied
with weighting functions are used. Therefore, for the sake of convenience
vevious basic pairs of body force for two- and three-dimensional crack problems
dare summarized in Table 1 and 2, respectively. Consequently, the solutions of
ali crack problems are reduced to solve the following integral equations
numerically

[tuxsxoe)anso,, =s.c. (5)

wheve, W : weighting functions, unknowns in the problem,

B : basic pair of body force (see Table 1 & 2),

DG : derivatives of Green's functions,

A i crack length (two-dimensional problems) or crack area (three-
demensional problems),

ext * stress field due to external load,

B.é. : boundary condition at crack.

Table 1 Basic pair of body force for plane stress problems

Plane stress problem, line crack : z=-a~a
Mode Mode 1 Mode 11
20y, 2ne, 2nPy npy
B 407 2t
. ¥ 2_ g2 Xy 2 g2
Ve 2ney rp - 5o /a?-g 2npy
" 3_ 3 3 a_
1S an an 9k

B : Basic pair, D : operator to Green's function

Table 2 Basic pair of body force for three-dimensional problems

Three-dimensional problem, elliptical crack : E?/42 +n? /b2 =1, a>b
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4. Examples of solutions

Because of the limitation of space, onl i i
. a ) ! > only selected solutions which may be
interesting in relation to the recent topi i i Fati
problems will b peciom.to pics in fracture mechanics and fatigue
The all numerical results of stress intensit
. ] y factors for the problems
Fig. 3-9 may be found in accordance with the indication of Table 3.p ens of
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Table 3 ’I~ *f% .
/X

Problems ] St = Section I-1
em: ri i
facizi intensity Fig 3 Table 9
F?'g. 3 | Table 4 [12] \ Fig. 7 K g/ P/ Ky o/ P75
ng' ° | James L Table 4 Table 5 ' b/r 0.1 0.5 0.1 0.5
fig. 5 | Tabie g f21] » g 0° 30° 45° | 0° 30° 45° | 30° 45° | 30° 45°
i 0 deg | K /o | K Jovb = = h/a t
;Tg' g, 1 dablE v e - iz 8, deg |6, deg | c,/c, | K /osib Kig/ovb . 1.0 [1.202 1.020 0.827]0.946 0.885 0.808]0.421 0.552]0.223 0.313
FTg' 7| Tevle 8 [18] 0 0 0 30 0.463 | 0.337 fable 8 My =K, ./ (o/b /E(k) )[0.5 [1.588 1.373 1.137|1.214 1.138 1.038/0.448 0.570/0.244 0.340
F‘.g' 8 | Table s [22] 15| 0.229 | 0.227 45 | 0.5 | 0.708 | 0.365 0.25[1.817 1.567 1.300/1.365 1.276 1.161[0.467 0.608/0.258 0.354
59 9§ Tahle 10 fedd 30 1 0.461 | 0.33 60 0.919 | 0.306 SOl 9 94 0.2 0.5 |[0.0 [1.989 1.703 1.378|1.481 1.372 1.238]0.506 0.636[0.284 0.392
45 | 0.705 | o. 90 : B/,
60 | 0 920 g ggg 30 0458 | B.342 0 [1.122 1.187 1.361 2.728
] . s _ . . . .
75 1.068 | 0.174 6.8 | 0207 | D559 3,125 11.106 1.121 1.188 1.631 Table 10
2 i W 2 |1 08 1.158 1.485
% | 1023 0 30 e N 9.2 -100 1908 3. : a/r [ 0.125 0.250 0.375 0.500
45 0.5 [ 121 | - Sis LIS lie L0 L8 b/a=l I} Jo/ib| 0.665 0.683 0.714 0.753
60 ’ 0.5 |1.070 1.073 1.088 1.201 =
3] % :.m 0.75 |1.049 1.052 1.060 1.119 % a/r~2/4) 0.25 0.5 0.75 1.00
~098 o liloss 1037 1081 1.07 § [025 [7.003 0.8% 0.780 0.683
45 0.9 | 1121 | -0 : 1050 | 099 0.920 0.840 0.758
60 1.125

A couple of other examples are illustrated in Fig. 10 and 11.
From numerical results [17, 20] for Fig. 10, the maximum stress intensity
factors KI _ along crack front for various surface cracks can be approximated

by
KI max 20.6290, /i /area for Poisson's ratio v = 0.0 (6a)
Table 7 ( B=45°) m alxe
K 20.6500 /' n/area  for Poisson's ratio v = 0.3 (6b)
2 o
Table 6 P/a KI/o/i-‘p‘- I max ‘
| b/a 0.5 2.462 » where O, is uniform tensile stress in infinity and area is the area of
Y74 . 10 2.0 5. surface crack.
L BN 001 01 05 o0 0.1 0.5 |ool 03 03 '
]
| o 1.803 "
[p |[97] 5-781 3.256 1.640 |3.293 2.772 1.728|2.230 2.120 1.726 W77 % “i A Tz
Tlseo . 1.314 N 2a /| 2 2 2 |
45%] 4.017 2.559 0.999 [2.388 2.203 1.182|1.671 1.624 1.331 b A e Bee]
[ o 0.970 ; ' y
{, |9 0-000 0.000 0.0000.000 0.000 0.0000.000 0.000 0.000 EEEN shil . SEER fectangle  Sewi-elipse
| ° area = 8R*-aR cos8 area =ab area = 2ab area =-f~nab
| Mas°] 1.938 1.074 0.818 |1.262 0.990 0.677 0.860 0.802 0.616 (a) (®) () (@)
Fig.10
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Figure 11 illustrates the prediction by the body force method and the
experimental result for the path of crack propagation in plexigrass[14].
In the prediction the maximum tangential stress criterion [24] was used.
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