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INTRODUCTION

Among the accidents of fajilure and damage in ships and offshore
structures, the most cases are due to the occurrence of growing cracks
originating from the cut-outs op discontinuities such as the rivet holes
in some structural components. Therefore, the computing graph of SIF for
radial cracks around the cireular holes has its practical use for the ship
designers in designing their related Structural components on the fail-~
ure-safe basis. In the present paper, we present a rather effective
method evaluating approximately the SIF for the radial cracks around the
holes, and provide some computing graphs accordingly. The method is, in
@ Sense, an extension of the Bowie's method [1]-{3] for the case of
single radial crack emanating from a circular hole to the general case of
the radial cracks around the multiple holes by the method of superposition.
Without loss of generality, the paper treated for simplicity, the problems
of structural member with twin-holes carrying respectively the same
radial crack under the uniform tensile load, so as to illustrate the
general method of solution. As the result, the computing graphs of SIF
for the cracks with various arrangements are plotted in Fig. 1 to Fig. 3
respectively. The calculating curve in Fig. 1 for the case that the
distance between the hole-centers M=8 is found to be in good agreement
with that obtained by the finite element method using plane isoparametric
elements. Thus, we may conclude that the effect of the residual stresses
around the otherwise free hole boundaries in present method on the final

value of the SIF for the cracks can be neglected, so long as the geometry
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condition at the crack tip is fulfilled, and the computing graphs shown in
ig. 1~-Fig. 3 are reasonably accurate for the purpose of engineering ap-

plications.
METHOD OF SOLUTION

For the general case of the radial cracks around the multiple holes,
we use the method of superposition and assume the expression for the sum

of the plane normal stresses in complex stress functions as follows:
- 1 v
o_+ B = uRe[E + ¢i(ci)/wi(ci)] (1)

It the first term in above expression corresponds to the case of single
hole or cut-out, then the rest of the terms may be regarded as the total
«ffect on that hole due to the presence of other holes. In fact, each of
rhese terms is chosen to satisfy the stress boundary conditions of the
respective hole. Moreover, the stress function ¢(z) = % i¢itti) must also
zatisfy the stress conditions at infinity. The choice of the sign in front
of each individual stress function depends solely on the position of its
zrack. For example, in the simplest case of an infinite plate with twin-
holes carrying co-linear cracks, the complex stress function is obtained
by superposing the term [¢é(;2)/mé(c2)] for the second holé to the expres-
aion [¢i(c1)/wi(cj)] for the first hole. The additional term to the first
hole will cause some stresses on its hole boundary, the twin-hole problem
then can be treated as a single-hole problem but with some "initial stress'
<round the hole boundary. Consequently, the same solving procedure as that
previously used by Bowile [1], [2] for the single~hole problem may be fol-
lowed, except that in this case the complex stress function and its de-

vivative are written in the forms as:

(2)

and

o{zg) = ¢1(c1) * ¢2(c2)~}

i

: & ] ]
¢'(g) = ¢i(gy) = ¢5(z,)
The negative signs are taken in eq. (2) for the case of twinholes with
inside cracks as shown in Fig. 1, since the crack directions are opposite
to each other. Here, ¢, can be solved by inverting the function Z=w2(c1)

@¥pressed as
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_ 4cosa+[(1+cosa)(Z—MR)/R+(1—cosa)]2
b 2(1+cosa) (Z-MR)/R

()

Above expression maps the point c?=1 onto the crack tip in Z-plane, i.e.

Z=R+L. Referring to the Bowie's work, we may assume

$(z)

"

anc1_n+ I a;;;hn]
1 n=1
and (5)
i _ 1 i -n 2 =N
¢'(z) = C,T[=+ I (1-nda_z  + £ (1-n)a z
1754 n - n*2
n=1 n=1

C -]
CiT[E ] §
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where T represents the uniform tensile stress at infinity. For
M > ®(B+~w), that is c2 + = , eq.(5) degenerates to the case of single-
hole with a radial crack. Finally, the complex stress intensity factor
will be:

1/2
K= K- Ko.= 2/7Lim¢’ (2)/[w" (£)] (6)
I Iz 1

For the case of twin-holes with inside co~-linear cracks, two mapping
functions which map individually the unit circle and its exterior in -
plane onto the respective cut-out of length (2R+L) and its exterior in the

Z-plane are

R ] 1 2 1/2- .
= = = - = = 7
Z mi(c) TToosa [+ 7 +(1~cosa)+(1+ Z;)(g 2Ccosa+1) " ] (7)
and
R 1 1 2 1/2
L= b OV S— — - oz - R 8
Z mg(c) T [+ - +{1-cosa)}+(1+ ;)(c 2zcosa+l)  “1+MR  (8)

Being analytic outside the unit circle, the mapping function 2=w(r) can be

expressed in the series form as:

Z=w@)=cler T A™ (9)
1 o
n=1
where Ci’ Ai’ Ag,... ..... . An are all real constants. Expanding eq. (7)
also in a series form, we have
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B srsm ] 2¢+2(1-cosa)+ 3~(5—‘+cosa—c s?u)c_1+ ;
"7 Ttcosa 2 n ?

n-1
{.E IRy R #R 4y )
n=2

1=4

e P . " =0
’Bi(°n»i*Sn+1-i)*R1Rn+slsn 2R +R /)] }c ] (10)

fhen all constants in eq. (9) can be determined by comparing the coef-
cients with that of eq. (10). According to Bowie's truncation method, we
+lso truncate the infinite series in eq. (9) to finite terms, i.e.

k
_ 1-n -k ~(k+1)
mT(;) = Ci[c+ f ALt Ak+1c Aot ] (11)

n=1

whers the truncation index k should be chosen so as to satisfy the following

ecquations:
[ 2 " 2
wT(l) = 0 and mT(l) =Q (12)

Fhe constant Q is the value obtained directly from the second derivative

=t eq. (7) and evaluated at =1, i.e.

_ R /1-cosa / 2
Q= 1+COSa[2+ 2 T ] (13)

-cosa
ubstituting eq. (11) into eq. (12), we get after some manipulations

k K

1 ) Q

B y® K—[:i;(n—i)n A +(k+2)-(k+2) :gZ(n~1)An— =]
n= n=1 1

(14)

k k

1 Q

A} = = (k1) (n-1)A_-(k+1)- (n-1)n A_+ =]
2 ka1 ég; B gé; n Cl E

it effective truncation number of terms k is the number which makes the
um (iAk+1!+,Ak+2,) @ minimum. After truncation, the number of terms
‘hosen for the complex stress functions depends on that of wT(z), i.e

k+2 k+2

(4 1-n s 1-n
o(z) C1T[E'+ E oz + E all, ]
n=1 n=1

i

(15)

r k+2 1-n k+2 feny
Similarly, () C,Tl3 + & B g § B, ]
n=1 n=1

where the constant 01 has been determined as mentioned earlier; the coef-

ticients oy and ag(n=1,2,...,....,k+2) remain as yet to be determined.
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Denoting Nsk+2, AN k+1’ AN Ak+2 and substituting each part of expression
both in eq. (11) and eq. (15) into the corresponding individual cut-out
boundary conditions, we finally obtain two similar systems of equations

for a and aé respectively. They are
T

NP e mA o (e gu = 97 B2 (16)
o+ I« ~n)t I a (1-n)+A_/4 = : 16
P n=1 n+p n n=1 ntp n P {"%9 P:2
tn which D = 1,25ecee-os No The two sets of linear algebraic equations can
be solved simultaneously for the coefficients oy and a;
Thus, the stress function ¢(g) is completely determined. Substituting
the values of (1) and w"(1) into eq. (6), we then obtain the stress

intensity factor KI.
NUMERICAL RESULTS

The numerical results for three cases of the crack arrangement, i.e.
for inside cracks,,outside cracks and all cracks emanating from the same
side of two circular holes under uniform tensile load T are plotted as
follows:

1) The case of inside co-linear cracks emanating from two circular

holes
Tn this case, due to symmetry, I (1)— K(l)‘Kgl). With the nondimensional

XA 1B
parameter L/R as abscissa and K( )/T/ETT7§7 as ordinate, the calculating
pesults are shown in Fig. 1. Lhe dotted line in Fig. 1 represents the
calculating result by F.E.M. for M=8.
2) The case of co-linear cracks emanating from the same side of two
circular holes

Obviously, in this case, K(2)\K(2) The calculating results are shown

IA T IB
in Fig. 2, in which the dotted lines represent the dimensionless value of
(2) (2)

KIB , whereas soiid lines for KIA .

3) The case of outside co-linear cracks emanating from two circular

holes.
(d) ((3)EK§3). The calculating results are

Again, due to symmetry, K A 18

shown in Fig. 3.

T:/MHR)
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DISCUSSION

1. As shown in Fig. 1, 2 and 3, for the special case M=w, i.e. the case
of single cut-out, the error of these curves is within #4% as compared
with Bowie's solution. When the result of M=8 in Fig. 1 is compared with
that calculated by F.E.M., the discrepancy between them for the range
0.25L/RS2.0 is less than +1%. Thus, the validity of this approximate
method is justified,

2. The effect of the adjacent cut-out on K;l)is the largest in the
first case of inside co-linear cracks. As shown in Fig. 1. With the increase
of the value M, the interaction between the cut-outs decreases rapidly. For
instance, the error caused by neglecting the effect of adjacent cut-out for
L/Rs1 is around +11% fop M=6, it reduces to *3% for M=10. Therefore, the
effect of adjacent cut-out must be considered, otherwise larger error are
likely introduced.

)

3. In the second case (Fig. 2), since K(2)>K<2, i.e. the effect of

IA IB
adjacent cut-out on K&i) is larger, the error caused by neglecting the
(2)

TA° and

effect of adjacent cut-out forM=gwith L/R:Q is less than #2% for K
+1% for K§§).
4. In the case of Fig. 3, K;a) is very close to that of the single

hole case, hence the effect of adjacent cut-out may be negligible.
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