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[1]

for linear isotropic hardening material, Amazigo and Hutchinson have
stained the singularity fields at the tip of a steadily growing crack.
tev neglected plastic reloading along the flank behind the crack tip, which

sy be an important feature of the plane strain problem. Besides, for most
snpineering materials the hardening is anisotropic with Bauschinger ef-

«vt, In this paper the constitutive law for anisotropic hardening suggested

sy Eadaschevich and Novozhilosz] is used to obtain the near-tip fields for

se-stpain mode-I steady crack growth, with the reloading zone being
s ddeped,

BASIC EQUATIONS

s constitutive equations for linear anisctropic hardening material

taken in the form (see [21)
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rime "M = 50 _ 40 o
P the deviator components (o2 & Gij 3 ckksij)’ and C the
equivalent active stress,
o _ .3 o' o! %
Je T (5'01] 13)
(i,3=1,2,3) (3)
-0 _ 3o 30" . 0
a = o A it
o acl]olj/ce 2Boijoij/ce
Here h and g are material constants, namely
1_3,1 1 1.3 ,1 1
R~ 37 (E E)’ g— -8 (Et—‘-ﬁ) (4)
where E — Young's modulus, Et—~ tangent modulus, and B — parameter related

to anisotropy of hardening with the extreme values 8 = 1 for isotropic
hardening and 8 = 0 for ideal Bauschinger effect.
Let X1 Xy be the moving cartesian coordinates with origin at the crack-

tip. Denote by o the stress tensor and~% = G the rate of stress tensor,

then the components of £ can be expressed in terms of the rate of stress

function ¢ as follows
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Note that x b ® Urr’ etc. The components of strain tensor e and rate of
strain tensor &" € can be expressed in terms of components of displacement
vector u and velocity vector v respectively by formulas of the same form,

for instance,

av 3
B -2, & .2 g 1 M (6)
11 ax1 22 ax2 * 12 ax2 X
or, in polar coordinates, (noting again %r*r* érr etc.)
3v v v, v
R _1,.%8 _ 1,1 97 9 1 ;
8r = 57 &7 3t Vo) 8@3‘ Gt T F ) (8

Referring to the results for isotropic hardening (B = 1) in [1], we
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Hill ook for solutions of the form, corresponding to dominant singularity

wh

¥

wmponents), we have w33(6) =

o

&3, with (10), (12),

2 plane strain, €33 =

b= a xSt (o) )

WGygs 2 = A" {t;508), %)) (8)

(075509, 8141 = A" 1235(0), 2°(6),5;4(0)} (9)

vy} = A2 (g (0), h,(0)} (10)

fug, wyd = A pST {6,(8), H_(0)} (11)

%Amz A rs—lwkm(e)’ Faw” AorSEAm(e) (12)

ere A 1s an amplitude factor, s and functions of 6 are +o be determined,
id from (3),

_ 0 ~ (3 3
Sli(e) =0, £7(8) = (a-Sij(G)Sij(S)}

o) 3 0 28y
t (9) = -lej(e) tij(e)/z (8)

N

523 + s§3 = 0 (superscript "e! denoting elastic

Ei4(8) = 0, and plastic imcompressibility

arjuires
_ 1-2v _ 1~ _
B, (8) = £ 255(8), uy,(0) = 7 t;;(8) (A=1,2) (1)
from (5)' using (7), (8), and denoting d/d® by "+ hereafter,

trr(e) E (s+1)fo(e) + f; (8)

(15)

i

tee(e) s(s+1)fo(e), X = -uf! 6)

which cartesian components tij(e) can be easily obtained. Similarly,

leads to

wil(e) = s cosego(e)-sinegé(e)
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w22(6)=s sineho(e)+cosehé(6) (16)

w12(8) =3 {(gé(8)+s ho(e))cose+(s go(e)—hé (8)) sind}

Identify the time parameter t with the increase in crack length, so

that in steady state we have for scalars or tensors ( )

(O] (17)

Applied to stress tensor ¢ and strain tensor e, (17) gives, respectively,
sin® zij'(e) = s cos# zij(e} + tij(e) (18)
sin® EA;(S) = s coseEXw(e) + wkw(e) (A ,w=1,2) (19)

Some of the equations in (18) and (19) are integrable after substituting
(15) and (16) into them, and lead to

212(6) = (s+1)sin8 fo(e)+cose fé(e)
222(9) = -(s+1)cos® fo(e)+sine fé(e) (20)
Ell(e) = - go(e)

the remaining equations in (18) and (19) are

sin@ Zil(e) = s cosf 211(9) + tll(e) (21)
sin@ 2;3(6) = s cosé 233(9) + ty,(8) (22)
sin@ Eiz(e) = s cosb E12(6) + w12(6) (23)
sin® 552(6) = s cosf E22(9) + w22(6) (24)

With E22(6), t33(9) obtained from (14), eq. (24) will be identically sa-
tisfied. From (8), (9), (12) and Hooke's law, the constitutive eq. (1) is

reduced to

_ 14y v U .o o
wkw(e) = —E"txw(e) ~F tii<e)5xw* 55 t (e)skw(e)/z (9) (25)

where p= 1 for plastic loading, and u= 0 for elastic responses, and
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& _ 1+v
S m(6) = (1+2g —E~)Z

% (8) (26)

2g
m(e)—(1/3+ ?T-v)iii(e)ﬁxw—2gE

by Aw

(21)—(23) and (25) are the six governing equations for plastic zone

{y=1) as well as for unloading zome (p=0). The functions G,(8), H,(8) for

{isplacements can be determined through the following relations

sin® Gé (g) = (s+1l)cosg GO(G) + gO(G)
sing Hé(e) = (s+1) cos® HO(B) + ho(8)

CONTIGUITY CONDITIONS

The crace-tip geometry is shown in Fig. 1. For hardening materials,
‘tresses and strains should be continuous across boundary T' between neigh-
toring zones. Denoting the jump in a quantity across I by []F’ we have the

ontiguity conditions

[£,(6)1,= [£1(8)],= (5 (0)]= [ (8)1.= 0 (27)
*2
-
UNLOADING
A LOADING
RELOADING ) b 5

Fig. 1 Crack-tip geometry

At unloading boundary FB’ an additional contiguity condition, should

« added to (27):
*0 - 50 - =
oe(ep+0) = ce(ep 0) =0 (28)

“he rigorous proof of (28) is omitted here, but it is intuitively accep-
le. Accordingly, all components of stress rate and strain rate should

¢1z0 be continuous across FB, and then we have

” = 1 = 1 =
CEr(e), = [gl(e)], = [hi ()], =0 (29)
B B B
= location of reloading boundary FD is determined from
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0 _ o0 Table 1 (v= 1/3)
ae(XQ)IFD z Ge(XQ)!FB for same e (30)
g =1 B = 0.5
NUMERICAL SOLUTION &
< % o = o, 0
By symmetry the boundary conditions at 6=0 are 005 | —0.u2  (—0.uu2)1) | 1,717 (1.717) | 0 —0.393 | 2.827 | 0.0056
4.3 ~0.373 (~0.373) 1.876 (1.875) | 0 ~0.318 | 2.440 | 0.1165
£1(0) =0, g!(0) =0, h_(0) =0 (31) 6.1 ] =0.197  (=0.197) 2.153 (2.174) | 0.1115 | —0.212 | 2.5u8 | 0.3230
) o
G.05) —0.142  (~0.136) 2.279 (2.393) | 0.3331 } ~0.174 | 2.568 0.4017
The traction-free conditions at 6=m pequj_re "‘,‘:’1‘ ~0.0797 (—0.0887) 2.360 (2.736) 0.6026 § ~0.134 | 2,590 0.4783

1) Values in parentheses are taken from [1] which neglected reloading

£.(m) = £l (m) =0 (32) zone

Having closed-form solutions in the unloading zone (with u=0), the basic REFERENCES
equations are integrated numerically over the loading and reloading plastic

zones. The values of £'"(0) and the exponent of singularity $ are assumed {11 Amazigo, J.C. and Hutchinson. J.W , J. Mech. Phys. Solids, Vol. 25
{11 ¢ . TG, s J.W. 5 . . 5

(1977), 81-97.
{2} Kadaschevich, U. I. and Novozhilov, V.V., Appl. Math, and Mech.,
vol. 22 (1958) (in Russian).

to start the numerical integration from 8=0, and the values of these two
parameters are refined by iteration until the boundary conditions (32) at
O=m are satisfied with a prescribed accuracy. The near-tip stress and
strain fields are computed for varying parameters a=Et/E, B and v. Here
are shown only some results for v=1/3. The singularity exponents s are shown
in Table 1 and Fig. 2 for isotropic hardening (8=1) and one case of an-
isotropic hardening (8=0.5). The angular distribﬁtion of equivalent active
stress zo(e), components of stress Err(e)’ 299(9), zpe(e) and rate of
plastic strain wir(e), wge(e), wia(e) are shown in Fig. 3,4 and 5 respec-

tively. The normalizing condition is taken as

max{2°(8), os6 } = 1
Comparison is made with the corresponding results (B=1) obtained in [1].
The numerical results show the significant role of the anisotropy parameter
B. Fig. 3 shows great discrepancy in angular distribution of equivalent
Stress from Amazigo and Hutchinson's results [1] for very low hardening
case ( a=0.01), and it is expected that in this case the plastic strain are

underestimated in [1] without consideration of the reloading zone.
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