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In this paper the constitutive law for anisotropic hardening suggested

{11

by Kadaschevich and Novozhilowv is used to obtain the near-tip solutions
in mode-III steady crack growth with power-law hardening. A parameter B is
introduced to characterize the anisotropy of hardening. A plot is presented
to show the dependence of angular distribution of stresses on the parameter

B and the hardening exponent n.
BASIC EQUATICNS

Ramberg-Osgood law for power hardening material in simple shear has

the form

1 1 n
e?z = 5{712/6, elfz = S04, (1)

= w8 p
€12 = Ey, T € >

12 ?
the superscripts "e'" and 'p" denoting the elastic and plastic parts, and
G, ¢, n being material constants, and n>1. Further, we assume that, in the
case of simple shear, the translation and expansion of the yielding surface
in stress space keep a constant proportion (1—8):B8. In the following we
shall assume 1 28 2%, so that the stress-free state lies within the sub-
sequent yielding surface. Then the constitutive equations of Kadaschevich
and Novozhilov will take the form
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Here by ojj we denote the .stresses corresponding to the center of the

vielding surface, by the superdot "-" the time-derivative "d/dt", by the

supercirclet "o the "active" component (02. = Oij—uij)’ by the prime ™"
1

the i 9! =gl = =02 6, .

1@ deviator component (01] 013 3U}<k61]) and
o

= V5 = /I%r 97
To = 72944%4 » T = Yzo35044 6

Let x, y be the coordinates centered at crack-tip and moving with it
along x-direction. For mode-III problems, nonvanishing components are only

1
Tz Oyzs Oxzs Oyy and €x,, Eyzs but denoted by Ty, Tys Ox, Gy and FYxs

5Ty respectively in this paper. Then the constitutive equation (2) can be
reduced to
P °P_,°
Yx—ﬁ A Yy"“y (5)
with
T =1 -, T =1-, %=/R2+32 (6)
X X X y y vy X y
A= % %n-Q:ro a (for plastic loading) (7)
and (3) leads to
P . e n-1 D fa] n-1
Tx @Y % Wy T ampm Y (8h
with
a = V(x; + (x; (9)

The stress components T,, Ty can be expressed in terms of the stress

function ¢ namely

= 9% - _ 3% LT
B B i * Ty roell T/ 4+ Ty (10)

Identify the time parameter with the increase in crack length, so that

in steady state we have for scalars or cartesian components of tensors ( )
oy = _ 3,
) = 5= ( Y e ) (11)
fhen the time-rate of the compatibility equation

. _a_.p*i.p:
A¢+ay Y, any 0 (12)
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can be reduced, by use of (5), (11) and then transforming to polar coor-

dinates centered at crack tip, to

1 i 9
L (208 23 cose——)A¢ ¥ Jhhos DL2E g; L

G r 238 ar 3r 30 98
173 8 }_
3 {ar (Aagr) = 5=(ap)f = 0 (13)
After elliminating &i and ;p from (5) and (8), and transforming to

polar coordinates, we obtain the constitutive relations®

n—l
o -1, B [§] (1)
ATP = (1 TI-pyn [(r1)a “dop+a, — 1n ]
o ca”” t sin@
ATg = YE—Ejﬁ-[(n—i)u mae +ag + *———a - (15)

in which, from (6), (10) and (9)

13 o 3¢
T i T % 0 e T T T o
T = R2f2 o = /aZro? (16)

(13) —(15) constitute the system of nonlinear partial differential

equations for unknown functions ¢(r,8), ap(r,8) and ag(r,6).
CONTIGUITY CONDITIONS

Let T be the boundary between two neighboring zones. As in [2,3], we
shall use the curvilinear coordinates (n,s) associated with I' and moving
with the crack-tip (Fig.1). Since stresses and strains should be continuous

for hardening material, we have the following contiguity conditions across
T

o1, = (2%

- ] =0 (17)

an~T

londp = [aglp = 0 (18)

s

* In this paper &r’ &, are used to denote the rates of the components o,

8
and ag , instead of the components of the rate of vector (apn,o0g).
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where [ ]F denotes discontinuity jump across I' . As to 32¢/3n?, its jump
can be proved as in [2,3] to be related to jump of X by the relation
El;{%x% P ¥ _c—o—lgé- B0 =0 (18]
w#here 8=6(s) is the angle of inclination of n-line (Fig. 1).

The various zones in the x-y plane are shown in Fig.2, with I — elastic
#zone, II — primary plastic zone, III —— unloading wake zone and IV —
secondary reloading zone. The near-tip zones are II, III, IV only. Similar
to the case of isotropic hardening (B=1) considered in [2,3], A can be
proved to be continuous across the unloading boundary I'g (i.e. A=0 at rg).
At the reloading boundary I'py we have the condition

(y) = %|,. () (20)

7|
‘It Ty

ASYMPTOTIC SOLUTIONS

The unknown functions ¢, o, are og are assumed in an asymptotic form

4 = r(ln%)sgggfm(e)<ln§)‘m (21)
ay,. %rm(6)

{ . (1-8) (1n2)° Y { z(1n§)‘“‘ (22)
“ej m= Ozagm(eﬂ

where A is a constant which can not be determined from the near-tip as ~

juptotic analysis. Then it follows from (10), (16) and (7)

(tpto) = (1n§)ség%(Tpm<e>, ROBNSEN (23)

(2,85} <1n%)52;fipm(e), Zon(0) ] (o)™ (2)
m:

(12?5 T (K,(0), (1-8)7 Hy(8), Bn(8)} 1ny™  (25)
m=0

o
{TZ,QZ,TZ}

(lnA s(n-1) }: A (6)(ln—) (26)
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Tem(8) = Fp(8), 1, (6) = ~£0(0) 1y, = —£1(8) + s£e(0),0(27) 1 Iy = (£} = (1-8)ap, ) (Ff + £0) = 0 (39)
%rm(e) = Tr‘m"(l‘s)arma %em(e) = Tem‘(l—B)aem (28) . . . .
i'or both plastic zones II and IV, the second asymptotic approximation of
Ko (8) = £3 + 32 Ki(8) = 26161 + 2Fo(f1—sFp), +++ (29) {13)»-(15) will then be
. = 42 2 - ’
Ho(8) = af + ad H1(8) = 20pn,0p, + 20‘@0&91 s o .. (30) : £ 1305F = (1_B)am)}. -0 (10)
2 - 92 02 [ _,0 © o o § _ _ _
Ko(8) = 73, + 1o Ki(8) = 27p, 70, + 2T4Tgys +o+ (31} : ) 1”gn 3)/2 Wi S 4 CH(n 1)/2{ Pl . Vsind &
2 Pl o ] 0 r1 01

_ cn g(n-3)/29, . ‘

Ao(0) = 28D R“ S0 + (s+2)apcos8} = A%, (u1)
cn o(n-5)/2 fn~3 2,8 . s o, . o ' n-1 (n-3)/2 < (n-1)/2 :
A1(8) = S0 Ko ) {“—2— KjKisind + Ko(Kysin® + QSKncose)} : e~ Hp Hjo,,sin + cHy {(aél +ap,)sing +
(32 a,b)
" B &= B s . 2 8} = A,% (u2)
here and hereafter the prime "+" is used to denote d/d6. The exponent s of i + (st )ueacos ¥ 1Tg

the logarithmic singularity is determined from the requirement that the
43 to the third approximation, only that of (13) will be needed, which has

elastic and plastic strains should be coupled in the equation of compa-
tibility (44) for the unloading zone III, and the result is vis form

%{(fg' + £1)sing + (£ +fg)cose} + { A\1(F—(1—B)ap)}' +

_ 2
S a1 (33)
+ { A (£~(1-B)ap )} — (s+1)hal £o + (1-Blay, } =0 (43)
The leading terms in asymptotic expansions of the basic equations
(13)—(15) are . iere we omit all the details and only write down the leading terms of final
solutions in various zones, which satisfy the equations (39)—(43) in
n - o] e £
{"D(fc (1-8)ap)} ' =0 (34) . plastic zones II (0S8 < ep) and IV (w-8,s68s5w), also the equation of com-
1 -3)/2 ) (- o : catibility i i : III (0 _<o<m-8_):
CEQ__ Ho(n 3)/ Hiap,sing + CH%“ 1)/2(@!,‘0 — age)sing = otp, (35) ’ catibility in unloading wake zone { b m-6g)
n-1  (n-3)/2 . (n-1)/2 . o 5 1 d p_
C"‘Q‘“ Hy H{,aeosu‘le + CHg (méo + ar0)31n6 = ADTGO (36) ‘éM’ + TIix T 0 (ub)
Noting that by (32a) Ao(0)=X,(7m)=0, we obtain the solutions of (3u4)—(36) tesides, the solutions meet all contiguity conditions (17)-—(20)
for plastic zone II in the form Stress Fields. For plastic zone II (0sS6S ep),
Ag(B) =0 : /F = ~—sin® t /F = L ¢ cose (u5)
0 1 (37) 3 TxO = 3 yo 8
Ay, {6) = Cicos® + C,sind j
(38) E “opr unloading wake zone IIT (Gp§ psm-6g)s
age(8) = —Cysind + C,cosH
1 . sin® T80 u6
. T /F = —singy + £ SRR g - TS S
and in the same form but with constants Cy, C, replaced by C%}, C¥ for p
secondary plastic zone IV. And fy(08) must satisfy : t JF = 1("___6 -8),

yo R B
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And for secondary plastic zone IV (-8 s08=m),

Tuo/F = V/28-1/8 Tyﬂ/F =0

Plastic Strain Fields. In plastic zones II we have

s+2 p

P _ Aystl p
¥ £ (1np) yxo(ﬁ) s yo

P g
. Ty = (1n)
Gy /F =—{sind — QA (8)F(8)} /(s+1)

e /r=q ,

n

and in plastic zone IV, we obtain

Gyio/F =—{sinb, — QA§(8,)H(8,)}/(s+1)
Gyio/F = Q.

For unloading wake zone III,

P A s+l P o A\s+2
= 1n— = by(In—)
Yy = 2o ny) 3 vy o( v

with Gaoe/F, Gbg/F the same values as (50).
The near-tip fields are found to be within two extreme states, the

£2531

state "Tr" and the state "Nb" , and denote the quantities with them

subscripts "tr' and "b", respectively. These two states differ by the
greatest amount as n=1, and coincide as n»e. The angles Gp and 64 lie
between the limiting values:

ep,tr’(B) P ep = Spb(B,n)

Gs’tr(B)z 8.2 Ssb(B,n)

The constants F and Q are related by
qQ = cr"a/g"
and
Q F(B,n)'iQ in(B,n)

t
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(47)

(48)

(49)

(50)

(51)

by

(52}

(53)

(54)

F(6) is defined as

Fo) = £{£1(0) = (1-Blap (8)} = £ 2, (o), (55)

=

and in zone II (06 ¢ SP) it satisfies a nonlinear first-order differen-
tial equation which follows from (41—43). The state "Tr' is one extreme
beyond which the unloading condition is violated in wake zone III, while
the state "Nb" is the other extreme characterized by the condition that
ﬂpb is the maximum possible angle of zone I, lse. F'(pr)z «, For
illustration, only the angular distribution of stresses TXO/F, TyO/F is
shown in Fig. 3, from which it is evident that the difference between the
two extreme states is rather small.

In the above solutions, the condition of vanishing A at the unload-
ing boundary Iy can not be satisfied. It is shown in [3] that for isotropic
hardening (8=1) this condition (A[TB=0) is satisfied by the state "Nb"
superposed with an inner boundary layer near g. This leads to the expec-

tation that the state '"Nb" will be the true state.
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Fig.1 n,s coordinates associated with T

265




X

Fig.2 Zones in the x-y plane
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Fig.3 Angular distribution of stresses.



User
Rettangolo


