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I. INTRODUCTION

f11

Since Rice proposed the J integral, much work has been published

‘oncerning single parameter to characterize the near crack tip behavior

2]

sder large scale yielding conditions. Work of Hutchinson[ and Rice and

/‘ﬁngren[s] provided the theoretical basis for J integral criterion. It is
important to determine the condition for J dominance of crack tip behavior.

[4]

“oMesking and Parks calculated the stresses and strains near the crack

iip. They found that plots of stresses and strains versus r/(J/oys) are
wiependent of J for bend specimen. On the other hand, they found singni-
icant deviation from normalized S.S.Y. distribution for the center-cracked

sanel under large scale yielding condition. Work of Shih and'GermanESJ has

fewn similar features. But the requirement that plots of stresses and

trains versus r/(J/oYs) are independent of J is too restrictive for J

nated fields, because this requirement means that the stress and
train fields near crack tip are a continuous series of self-similar states
! the size of dominated zone will proportionally increase with J integral.
¢ example in order to get same value of r/(J/oyS) the distance r should
inerease 10 times when the J integral increases 10 times.
Prom a physical point view, fracture processes are only depending on
st stresses and strains immediately near crack tip. Stresses and strains
utaide the fracture process zone are not important for fracture analysis.
This paper provides detailed analyses of the stress and strain fields
«ound the crack tip in both hardening and nonhardening elastic-plastic
siterials. The stresses and strains at a fixed point immediately adjacent
: tha crack tip have been calculated for different geometry configurations

wd different sizes of specimens. The circumstances under which a single
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barameter J can be used to characterize the crack tip fields have been

discussed.

II. SOLUTION PROCEDURE OF PLANE-STRAIN CRACK PROBLEM

1) Variation Equation

The variation equation presented in [6] and [7] is

U = f D Yay +f P17 4s (1)
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Equation (1) is equivalent to the equilibrium equations of stress rate fields
for large elastic-plastic deformation theory employing up-dated Lagrange
coordinates. The finite element analyses are based on equation (1). The
formulae of element stiffness matrix have been given in [7]. Eight-noded
isoparametric element with 3 by 3 Gauss integration points are employed in
the calculations for center cracked panel (CCP) and cracked bend bar speci-
men (CBB).

2) Finite Element Mesh

For long crack the finite element mesh employed is shown in Fig. 1 in
its undeformed configuration. In zone C the 8 elements connected to the
crack tip are degenerated to triangular elements. For hardening material,
the crack tip nodes bond together and each triangular element has only
six nodes. For nonhardening material, the degenerated elements still have
8 nodes and the two corner nodes and mid-side node are initially connected
to the crack tip. As the load is increased, the crack-tip bluntting is
modeled by the separating of nodes at the crack tip. The total mesh con-
tains 432 nodes and 127 elements.

For short cracks, the finite element idealization used is the same
as in [9]. The total mesh contains 398 nodes and 115 elements.

The smallest length of the crack tip elements is about 5-10% of the

short crack length with ratio a/w = 0.024. The mesh is formed automatically
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whaere Oy is the equivalent stress, Uys

and can be easily changed.

For hardening material the true stress-strain curve is modelled by a

power-law relationship of the form

- — .n
o, = Gys(ep/spo) (3)

is the yield stress, the equivalent
y P

ilastic strain. The calculation uses an incremental tangent modulus pro-

coedure and contains approximately 200—300 load increments.

III. RESULTS OF LONG CRACK AND SHORT CRACK PROBLEMS

The calculations were carried out for plane strain and both a non-harden-
and hardening material. Material properties were v=0.3 and GYS/E=1/3OO.

For the power-law hardening material the hardening coefficient n was

made equal to 0.1. The coefficient €po is equal to 0.002.

1) Stresses and Plastic Strains near Crack Tip for Hardening Material

In Fig. 2 the true stress 9 ahead of the crack tip is plotted against
integral. The J integral is normalized by rg Oys» where ry is the radial

atance of a fixed point for which the stresses and strains are calculated.

for cracked bend specimen (CBB), it is clear that the crack tip stress and

ain fields are configuration-independent. The curves for both a/w=0.25

and a/w=0.75 are virtually identical for large scale yielding conditions
anidd peneral yield conditions. On the other hand, for the center cracked
panel(CCP) the stress and strain fields are a strong function of the geo-
sty configuration and specimen size. When the specimen is large enough
(i.e. ro/w is small enough) the curve are close to that for CBB specimen
under large scale yielding condition and general yielding condition.
According to the theory of dimensional analysis, the stress and strain
fields only depend on nondimensional geometry parameters such as a/w, L/w
«tir. for the same material. For a given crack length a and specimen width
w, one can imagine that there exists a small dominated zone in which rg/w
2mall enough. Therefore for the center cracked panel, the dominated
one exlsts under large scall yielding and general yield condition, but
the size of the dominated zone is quite small and will not proportionally

increase with the increase of the J integral.
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Especially when the crack is small, one can find significant devia-
tion from that for CBB specimen even in the intermediate yielding range.
The difference will increase with the increase of ratio ro/w. Fig. 3 shows
the equivalent plastic strain Eﬁ as a function of J integral. One can
find that short crack exhibits an entirely different behavior from the
long cracks. This is because the plastic zone develops rapidly and will
surround the whole short crack under intermediate yielding range. Fig. u
shows a typical plastic zone at two load levels K, =11.7 MNm—a/zand
Ky=13.7 MNm—3/2 Therefore the local plastic flow is much easier than in
the case of long cracks. This is the main reason why the plastic strain
is much higher and the normal stress is much lower for short crack. The
large specimen with short crack also exhibits a different behavior with

that for long cracks.

2) Stress and Strains near Crack Tip for Nonhardening Material

As pointed by McClintock[aj, the slip line fields near the crack tip
for the center cracked panel are entirely different from that for bend
specimen. The hydrostatic stress level near the crack tip is much lower
than the level in the bend specimen. Therefore the crack tip fields under
general yielding condition should be configuration-dependent.

Fig. 5 shows the normal stress Oq as a function of J integral. For
small scale yielding and long crack the normal stress will increase with
increase of the J integral and the crack tip fields seem configuration=-
independent. Especially for bend specimen the crack tip fields are really
independent of ratio a/w even under general yielding condition.

From a macromechanics viewpoint one can imagine that the zone between
a blunted crack tip and intersect of two logarithmic spiral lines as shown
in the inset of Fig. 5 is the intense strain zone. According to the perfect
plasticity theory, the size of the intense strain zone Te» is approximately
equal to 2.405 6=2.405 J/0yg. When the value J/(rooyS) is equal to 1/2.405,
i.e. when the intense strain zone size reaches ry, the crack tip fields
display some differences for different geometries. The normal stress
reaches a maximum value of 3.10 ¢ and approximately equals the value

ys

2.97 o in Prandtl's slip line field solution for bend specimen.

Vs
For center cracked panel, the maximum value of (Uemax) is a little
bit lower than 2.97 Oyg- After reaching the maximum value (Uemax)’ the

normal stress % will decrease with increase of the J integral and show
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ignificant deferences for different geometries. Fig. 5 also shows the

sormal stress o. for the center cracked panel with a short crack. It is

~lear that the stress % deviates sharply from that for the bend specimen

results even under small scall yielding conditions.
Fig. 6 shows the equivalent plastic strain ep as a function of J

ral. One can conclude that the crack tip fields are dominated by J

integral for bend specimens, but the crack tip fields can not be character-

ized by the J integral for the center cracked panel.
IV. CONCLUSIONS

From the numerical results one can draw several tentative conclusionms:

1) For the bend specimen with long crack the crack tip fields are
configuration-independent and can be characterized by the J integral even
{»r the nonhardening material.

2) For the center cracked panel and hardening material with long
erack, there exists a dominated zone in which the stress and strain fields
~an be approximately characterized by the J integral, but the dominated
sone size is quite small and will not increase in proportion with the
increase of J integral.

3) Short crack exhibits entirely different crack tip stress and
«train fields. For the same value of J integral, the stress level is much
lower than that for long cracks and the plastic strains are much higher than

1hat for long cracks if the nonhardening or low strain hardening material

is concerned.
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ZONE B

Fig.1 Finite element mesh for long cracks
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Fig.2 Stress ratio oe/oys vs J/(Uyorﬂ) at 9=0 for a hardening

material
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Fig.3 Equivalent plastic strain ahead of a crack tip as a function

J integral for a hardening material.
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Fig.4 Plastic zone shapes for a CCP specimen and a hardening meterial

(n=0.2). Note the hatched area is plastically deformed but too
small to show the integration points. Here W=20 mm, a=0.1 mm.
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Fig.5 Stress ratio oe/oyS vs J/(cysro) Fig.6 Equivalent plastic s
‘ for a non-hardening material vs J/(oysro) for a non~

hardening material
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strain energy density criterion.

ON INCLINED CRACK UNDER COMPRESSIVE LOADING
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ABSTRACT

The effect of compressive loading on an inclined crack is examined

in this investigation. Four fracture criteria, namely the maximum hoop

5, the strain energy density, the potential energy release rate, and
the energy-momentum tensor, are reviewed.

34

A modified model is proposed
to include the frictional effect of the sliding mode under compressive

tvading. The predictions of the initial direction of crack growth are

wmpared to experimental results over a wide range of inclined crack

angles.

&

ODUCTION

The inclined crack problem under mixed mode loading has been a
onbroversial topilc in recent literature in fracture mechanics. A

opular representation of a two-dimensional mixed mode loading case is

straight crack oriented at an angle B to the uniaxial tension (Figs. 1
% ). When B = 90", the classical Griffiths crack is resumed and once
fe critical fracture load is reached, the crack will start to propagate

n the direction of its own plane. For values of B other than 900,

ilarity is lost in that propagstion starts with crack initiation angle
Hiferent from zero.

The problem involves the prediction of initial

srack growth angle Bu and the magnitude of the applied load O,y at which
growibh oceurs.

In an early attempt to solve this problem Erdogan and Sih [1], Ewing

i1
3341

Williem [2, 3] made use of the maximum hoop stress at the crack tip
i a criterion. Later Sih [L, 5, 6] proposed a new concept using the
Extension of the original Griffith's
fracture criterion to the inclined crack problem was pursued by several

reneachers [8, 9, 10, 11] using potential energy release rate G. Another

siternative approach was proposed by Tirosh [12] using Eshelby's energy-

emenibum tensor [13].
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