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INTRODUCTION

Although mechanical problems can adequately be treated by the present-
1y highly developped numerical methods, from the engineer's point of view
there is a certain need for analytical solutions even if they are based on
simplifying assumptions. They can serve for quick estimations of a struc~
tural situation and the costly numerical methods can be applied if the si-
tuation is too complicated for a simple analytical procedure or if very
precise results are required. It will be shown in the present paper that
for the center cracked tension panel important quantities can be estimated

by very simple formalisms.

ESTIMATION MODEL

In the estimation model two load ranges are distinguished:
~ Large scale yielding. The applied force, F, is less than or just equal

to the net section vield load, F_, which is defined by equality of the

¥
nominal net section stress, Yo and the stress Oys representing the
onset of yield.
-~ Net section yield, where F > FY'
The quantities calculated by the estimation model will be compared
with experimental results.
Three important displacements of a center cracked tension panel are
- load line displacement, s,
~ crack mouth opening displacement at the specimen’s center line, v,

- crack tip opening displacement §.
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The linear elastic solutions for these quantities cam be applied up
to the yield load, FY’ provided that the plasticity corrected crack length,
2 ee is used. This is in accordance with the findings of other authors
{1-3] who demonstrated that linear elastic fracture mechanics with plastic
zone correction works very well up to the yield load. In the present work
Irwin's plasticity correction is used, i.e. 3 =2 + O'S(Kszgo_zz)’ and

the yield load is defined by oy = Ao . For the sake of simplicity, A = |

was chosen although in some instancez-éeyond A = 0.9 the error in load may
axceed 5 per cent {see also Ref. [31).

The solutions for v and s were taken from Tada et al. [4]; the crack
tip opening displacement is not considered here, it will be the subject
of a future paper.

A further quantity of interest is the J~integral which can be replaced

by & for F < F.

eff
For F > FY the deformations are treated like a tensile test on am or-
dinary tensile spesimen. The work-hardening law assumed

1/

= g (2 " > i
e = ey 6;) for € g €))]

expresses the strains by taking the value at the yield point, €gr and
multiplying it with the magnification factor (a/aY}Lﬁ. It is assumed that
the displacements s, v, and & can ba extrapolated from the yield point

the same way, i.e.
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If the gage length for s is much larger than the specimen width and addi-
tional elastic contribution is to be expected.
For the J-integral, an expression is used which consists of a linear
elastic part, G, and a plastic contribution:
%9 ¥ %

J=g+ Bt 3)
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with ok actual net section stress of the point under consideration (ac-
counting for crack growth where applicable), g, 2O for which 10 per cent
of s is plastic (the calculations showed that mostly o, = (0.8 - l)co‘2 ®
0.90Q2), and s = plastic portion of the load line displacement, s.‘Thus,
(Gn + Ue)/z is an average flow stress acting on the actua% ?et.sectlon and
the plastic portion of J is based on the solution for a rigid ideally
plastic center cracked tension panel [5]. Eq(3) is similar to the method

of Bucci et al. [5].

COMPARISON WITH EXPERIMENTAL RESULTS

In order the verify this simple model a number of calculations have
been donme using input data from an extensive experimental R-curve program-
me [6]. The materials investigated were a high strength aluminium alloy,
the same alloy in a very soft condition and an alloy steel. All the calcu~
lations demonstrated a close coincidence with the experimental results.
Due to the limited space only two examples can be shown in Figs. | and 2,
namely s and J for one specimen. It is worth to note that crack growth

started at ¢ Jo & I, i.e. most of the range shown here is coverad by

. crack growth.
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Fig. l: Load~line displacement, s, for a center
cracked panel of the low-strength alu-
minium alloy (2W = total width, B =

thickness),
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Fig. 2: J-integral of the specimen from Fig. 1

Eq(3) can be used for driving force calculations in order to predlct
instability. Two examples are shown in Fig. 3, one for the high-strength
aluminium and one for the low-strength aluminium. A further feature is
obvious from this diagram: although both materials have very similar R~-
curves and although both specimens have the same plan-view dimensions,
their instability stress differs by almost a factor of two. This shows
that in a fully yielded net section condition the R-curve alone is not
sufficient to characterize a material's instability behavior. The reason
is the strong influence of the material's flow properties on the driving
force which can also be seen in Fig. 3.

A specific problem should be mentioned: technical materials usually
don't work-harden according to a single power law; thus, for the work—
hardening exponent an average value was determined the following way: the
three materials investigated exhibited a double~linear work-hardening

curve on a log-log plot and the arithmetic average of both slopes was
taken,
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Fig. 3: R-~curves and J crack driving force curves for the two
aluminium alloys at instability. The true values for

g, were 46 and 83 MN/mz, respectively,

CONCLUSIONS

A simple model was developped which calculates the load line dis~-
placement, s, and the crack mouth displacement, v, by a two-step proce-
dure: first the values of these quantities are calculated at the load of
incipient ligament yielding using plasticity corrected linear elastic
solutions. For higher loads a magnification factor given by the material's
work-hardening law is used to calculate the actual s or v from their values
at the yield point. Furthermore, the J-integral can be estimated from the
plastic portion of s. Comparison with experimental values of three dif-

ferent materials demonstrated good coincidence.
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