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I. INTRODUCTION

Mathematical theory of fracture, especially its nonlinear part has
been an attractive and important area in engineering and applied sciences.
In practical applications, various kinds of nonlinear media, such as non-
linear elastic, elastic-plastic and visco-elastic-plastic ones, may be
used in static, quasi-static and dynamical cases, and sometimes one will
face to handle coupled systems for these nonlinear media, as the thermo-
mechanical ones, for example. One of the main purposes for this mathemat-

ical research of fracture is to develop available fracture criteria for

engineering uses.

Some important works initiated the research
on mathematical theory of nonlinear fracture
[1,2]

problems In 1968, J.R. Rice proposed the

famous path-independent integral J:

3= way - T, ~ ds (1)

here W is the strain energy density:

W =jcijd e.. (2)
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;22 .. are the stress, strain tensors respectively. T, is the traction
9iqr Tif ? £ i

vector along the integration path around the crack tip, and u; is the
displacement. Since then an important nonlinear fracture criterion based

on J has been formed and various extensions to dynamic case have been
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made[“].

In this paper we give further discussions on path-independent integrals
and fracture criteria in nonlinear mathematical theory of fracture. New
path-independent integrals are worked out for fracture dynamics of coupled
thermo-mechanical systems of nonlinear media. Mechanical meaning of these
integrals are shown to be related with the dynamical crack extension force
which is firstly given here by integral expressions. Thus it is possible

to form nonlinear dynamic fracture criteria based on the present research.

IT. CRACK PROPAGATION IN NONLINEAR ELASTIC MEDIA

Let u,, eii’ Ujj, b Ty Vi, hi be the displacements, strain, stress
tensor, density, temperature, velocity and heat flux. Write the constitutive

law as
L= (e T) = £f..(e, 43 - R..0, = Tw (3
915 flj\ k1> T Triten) 813 : 8 T 3)
here 8., is the thermal moduli. Let Pjﬁ be heat conduction ccefficients,

oy 3
the heat capacity per unit mass at constant strain. Introduce Hi’

proportional to the entropy displacement, such that

h, = 3H,/3t (1)

and

H.= v = e — {5
0, when 6 eij 0 {5)
e

In the subsequent we denote the elastic strain as oy and denote the

elastic displacement as u, .

cion in nonlinear elastic media, we may propose

For the crack propa;
the following:

Theorem 1. The integral

t ou, 8v, oH,
{1 . & 3, 1.
y'l ~vit0( 5{)(W‘+Q“Xi“i-lﬁ_}dy (T}""a*; + MTE "*s-_q)do)d't
u., t o 9H.
; i, 1 1 1 : i "
+ Vi dv + = A,.H. —= dvdt (6)
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is path-independent for any path I around the crack tip (Fig. 1) and any

is path-independent for any T'(t) around crack tip and t1>t>t 20.
t1>t0>0. Here

]

III. CRACK PROPAGATION IN ELASTIC~PLASTIC SOLIDS

= {f. . de,, 7)
1] 1)

We introduce the integral
is the strain energy density unden uniform temperature, .
ou, oH,

t
1 i 0 1
DCVQ Yl+ = S‘t (_g.(wei-Q-K—Xiui)dy—(Ti-——a—E TV “5x ds)) dt
5 de (8) 0 0
0

Q =

+

ftifv (o354 8;58)0e0. /ax avat
is the heat that may be transformed into useful work. 0"Vp

" oH, du, t1
K= 1/2 pv,v, (9) +j j T Miyfly = dvaee fpv—L g (13) ;
is the kinetic energy, Here W_ is the elastic strain energy density,
- ~1 (10) ‘ 
STRRCH Wy = J; del, (1) £
is the inverse of matrix (k - The domain V is bounded by T and crack V_ is the plastic region within path T, ezi)j is the plastic strain. £
surfaces. Here we assume that X is independent of x. P Now we have the following: ?
If we consider moving paths P(t), then we could obtain the following: Theorem 3. The integral Y, is path-independent for any path I' around =¥
Theorem 2. The integral the crack tip and t1>togo in the case of elastic~plastic crack propaga-
S‘tj tion. =
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or simply
or simply
szr{t)[w+Q+(pai-:<i)ui]dy % . SH.
1 1
- o i ~(T,~= -~ == v, —3)dg
Bu, 3H, da, . Ys jf(t)(we+Q+(pal Klugday- (T Tg. t BE
LG R T 1P ~f ooy o —idy
P)x Ty "1 3x v(t) "Ti ox i
: 3 P 1 ., ° i
1 e 5 = A: Ho—= dv
; A - * 5, oy 0iaPag00m LT ey
+ Jviey ?I,—O«Aijhj»——’—ax dv L2
- (16)
- Sooi v

200 201




is path-independent for any path I'(t) around the cpack tip and any t1>t020. In limiting case for the crack notch width tending to zero, a relation fop

Theorem 5. The integral the sharp crack results:

t &
_ {1, (W +Q_+(pa,~X,)u;)dy G =Y 2
Y7 = S;o (jf(t) e ‘e b S s (21)
aus 3H, t 2a Results hep b ; i i
- i e | l)dg) e j.l g ol i S esults here may also be extended to 3-dimensional case.
i 9x TO i ox to vooioo9x For simplicity, all proofs are omitted here.
14 oH,
1 1 * i ; .
+,LO S Mgty ava (a7
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is path-independent for any path I'(t) around the crack tip and any t, >t.2

Here
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IV. Y-INTECRAL AND DYNAMICAL CRACK EXTENSION
FORCE

Here we have the following

Theerem 6. For dynamical notched crack extension in coupled thermo-
mechanical system of nonlinear media, there is the following relation be-
tween path-independent integral YS and the dynamical crack extension force
G:

' :é:(
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