NON~COPLANAR CRACK GROWTH

S. Nemat-Nasser
Northwestern University, Evanston, 111, 60201, UsAa

Some recent analytical results on branched-curved extension of a pre-
existing straight crack in brittle solids are reviewed, considering both
overall tensile and overall compressive stress fields. Experimental obser-

vations are mentioned, and certain common failure mechanisms which stem

from unstable non~coplanar crack extension are briefly discussed, Under

overall compression, these include axial splitting, sheet fracture, rock-
burst, and surface spalling.

INTRODUCTION

Material heterogeneity, the nature of applied loads, and other factors
often cause non-coplanar extension of pre-existing straight cracks in
brittle solids. Figures 1 to 4 illustrate thig fact. In Fig. 1, the pre-
existing straight edge cracks, AB, A B, and A, B,, in a glass plate are
made to grow by the application of a concentrated heat source at points 4,
4, and 4,. The central crack grows co-linearly, whereas the other two
cracks curve toward the free edges of the glass plate. Crack Ay B, is not at
a vight angle with respect to the free edge, AA,, of the plate. Upon the
application of a concentrated heat source at points A and A,, the pre-
existing crack AR smoothly curves toward the closest free glass edge with
almost no initial "kink," whereas A;B, extends with a sharp initial kink,
followed by a smooth curve. Figures 2 and 3 illustrate "kinked-curved"
crack growth under overall compressive far-field loads. Upon the applica-
tion of axial compression, the pre-existing crack AB in Fig. 2 kinks away
at an angle of about 70° from its initial path, curving toward a direction
parailel to the applied compressive force. Figure 3, on the other hand,
shows crack initiation (and growth) from the edges of a hard inclusion
(aluminium) embedded in a soft (Columbia Resin CR39) plate, subjected to
overall axial compression. In this case, a "microcrack" first develops
along the interface between the hard inclusion and the matrix, and then
crack growth occurs with a sharp initial kink followed by a smooth contin-
uous curve; see Fig. 4. At Northwestern University, the author and co-
workers have made many other experiments which show that non—-coplanar crack

extension is a rather common failure mode in brittle sclids; see, for ex-

ample, Karihaloo and Nemat-Nasser {1] and Nemat-Nasser and Horii [2]. Other
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2arlier experiments on crack growth in compression are, for example, Brace
and Bombolakis [3], Bieniawski [4], Hoek and Bieniawski {51, Fairhurst and
Cook {61, Ingraffea {71, and Holzhausen [8}.

The analysis of crack branching under overall tension has been con=-
sidered by a number of authors; see, for example, Andersson {91, Banichuk
{10}, Hussain, Pu and Underwood [11], Goldstein and Salganik [12], Bilby,
Cardew and Howard {13}, Kitagawa and Yuuki {14}, Palaniswamy and Knauss
{153, Wu [16-18], 1o {19], Cotterell and Rice [20], Xarihaloo, Keer and

Nemat-Nasser [21], KRaribaloo, Keer, Nemat-Nasser and Oranratnachai [22],
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Nemat-Nasser {23,247, Hayashi and Nemat-Nasser [25-27], and Karihaloo {28]
who presents am overview of the basic recent results in this field. Palan~
iswamy and Knauss {157 and 1o [19] also discuss some of the existing liter-
ature. Branched-curved crack growth under overall compression, on the
other hand, has not received much attention. References to some existing
work are given by Holzhausen [8] and Nemat-Nasser and Horii [2].

For small kink angles and for slight deviations from straightness,
perturbation methods have been used Lo estimate the initial paths of ten—
sion non-coplanar cracks [10,20,22], as well as those of compression-in-
duced ones [2]. TFor large deviations, on the other hand, complete analytic
formulations and results are given by Lo [19] for tension cracks, and by
Nemat~Nasser and Horii {2] for frictional compression cracks.

In this paper, some existing analytical results for branched-curved
crack growth are discussed, emphasizing the cases when under far-field
compressive loads the pre-existing cracks undergo frictional sliding which
produces kinked-curved tension cracks that may lead to overall anisotropic
failure modes. Rock splitting, rockburst in deep mines, exfoliation, and
surface spalling are examples of this type of failure.

FORMULATION

Attention is focused on plane problems (plane strain or plane stress).
Muskhelishvili's [29] complex potentials are used. First these potentials
are obtained for a single dislocation close to a pre—-existing crack across
which certain conditions are satisfied, and then with these potentials as
the basic Green's functions, curved crack extension is formulated by dis-
tributing suitable dislocations along the crack path in such a manner that
stress~free conditions are attained there. The integrals thus extend over
the extended crack path only (rather than over the pre-existing crack and
its extension), resulting in considerable reduction in numerical efforts.

Figure 5 shows a pre~existing crack, AB, and a single dislocation o
at point z, = Xy +dyg, 4= V-1I. In terms of the analytic functions & and
¥, the stress and displacement components are

o *o, =200 + ), Oy = O+ 2t = 2(ze" + ¥y,

ZG(uK -+ iuy) =k - 20" - ¥, {1)

4 - . 3 -
where G is the shear modulus, x = 3 - 4v for plane strain, k = T :

for plane stress, v is Poisson's ratio, prime denotes derivative, super-

pused baxr denotes the complex conjugate, and subscripts x-and ¥y Tepresent
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o the corresponding rectangular
' yz_ Cartesian x and y components.,
Xy In the absence of any cracks
MY o (a homogeneous plate), the stress
Ze 9 field produced by the dislocation
TXY a = Gbeie/irr +1),
&N a,
* i A B X ‘f"" X b= [u]+ilul, @)
+ - + -
Txy (ur] =u o -u, {uelaus - Uy,
T is solved by the following stress
¥ I functions:
9y
2y = a 2n(z »zo), 3)
Figure 5 N --»Ezn(z-zo)»a Eol(z—zo).

The normal and shear tractioms introduced on the xz-axis by these
potentials are given by

PO,z = og - i‘[‘%y = af[f(x,2)) + EGz)l + a(z,~ zg)g(x,2;), %)
where

Beaz) = @ - 2D, Bzy) = G- )

1. An Open Pre~existing Crack
When the overall far-field conditions are such that the pre-existing
crack remains open during the branched-curved crack growth, then additional

potentials, @R and WR, are introduced in order to satisfy

O, it =0 fory =0 and |x| < c. (6)
y xy

These stress potentials are obtained in such a manner that they correspond
to tractions -pc(x,zo) ony =0 and [x| < ¢; Eq. (4). Following Muskhelish-
vili {29], Erdogan {30], Rice [31], and others, a Hilbert problem is solved
with “?O(x,zo) prescribed on the pre-existing crack. This corresponds to

v -1 2 X{X)po(x,zo)dx c sz ok
o = 2miX(z} & % -z iy ¥@ =G L ¢))

where C is fixed such that a single-valued displacement field results.
Since
2 1

2

c E il i ]

1 X(x) 2 Jif = (0 B i 1 “

THIX D) »{{ oo F(x,2z)dx 2[1 ¥ {-Y--—Zz e ) JZ;ZO 5 (32‘.32;’%—’ (8)
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it follows that ¢ = -ty and

13(2) = —alF(z,20) + F(z,Z)] - a2y~ 2)8(z,2 ),

YR(2) = 2(2) - 3/ (2) - zo7, €
where

~ X(zg) 1 A 3 ~

F(z,zo) = %[l - m}mﬁ and G(z,zo} = ’5;(; F(z,zo). {10)

This result has been given by Lo [19].

2. A Closed Fricticnal Pre-existing Crack
It is assumed that a cohesive force, Tc, acts across the closed crack
which also transmits frictional forces. The shear stress (assumed nega~
tive) across the crack then is

+ -

Ty ™ T ™ 1, F Ho, for y = 0 and x| < ¢, (11)

where Gy < 0 is assumed, and W is the coefficient of friction. The addi-

tional stress potentials, @R and VR’ are then obtained in such a manner
that

= & = e 0
P(X,zn) = OyR irxyR irxy incy

= @B-aB) [E(x,20) +F(x,5)] + 5z )lasglx,z,) + aBg (x,2 )] (12)

is attained on y = 0, |x] < e, where g = %(1+ ip); note o = 0. The
final solution hence is, using (7) and (8),

(=) = (B-aB) [F(z,2)) +F(z,7,)1+ (@5 -2p) [aBllz,200+ api(z,7 )], (13)

where ¢ = (aé-"aﬁ), and ﬁ(z,zo) and é(z,zo) are defined by (10).

For the application to kinked-curved crack growth similar to the one
shown in Fig., 2, two dislocations symmetrically placed with respect to the
center of the pre-existing crack must be considered. In this case we add
to the right-hand side of (12) terms corresponding to the dislocation -g
at point ~2,- This yields
pzg) = (aB-a) {[f(x,20) ~Fx,~ 2] + Gz -, -2 1}

B . _ 2 - (14)
* (zZy-zp) {aBlg(x,z )+ g(x,~z ] + aplg(x,z )+ g(x,~z )1}.
From the symmetry ¢ = 0, and
0(2) = (@B~ oB)[F(z,20) + F(z,2)] + (2o~ 20) [afGlz,2 )+ agelz,2 )1, (1)
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where

5 X(zg) z
Flzozp) = [1 -2 30
(Z Zo) [1 ZO X(Z) ]z ._zo (16)
X(ZO) 2242 k24 1L
Glzyzg) = 3z, F(2:2g) = [x - E‘X(z) J'(—z—zg“—?"ﬂ'{l X(Z)g(zo)]zz‘zo;

note that in equation (8)1 of [2] and (2. 9); of [32], the term 2/z, inside
the brackets ig missing, and that the corresponding equations (8), and
(2.9)o must be corrected accordingly.

3. Far-Field Stresses
Let the applied far-field stresses be denoted by o w3 cy s, and T —
and observe that for a uniform body (no crack), the corresponding poten~

tials are

®ly = (cyw to b, ¥l = (Uyoa —-crxm)/Z + h-xyw‘ {17)

For the open crack, QmR and WwR are required in order to remove the
tractions (v ~itx ») on the pre-existing crack. Hence, direct calcula-

tion from (7) vields

1 ) z
@;R(z) = 2<Uym'"irxym)L"l + iz;?} for open pre-existing crack. (18)

For a closed frictional crack, on the other hand, it is required that

) and Y., 1ead to T + 1 = =T, G udym, o = 0, on the pre-existing

@R xy® @R @R
crack. Hence, again from (7),

@;R(z) *‘%(Txym —ucym-+rc)[l - i%zf] for closed frictional crack. (19)

Note that the corresponding w;R is obtained by substitution from (18)
and {(19) into {9)5.

4. Singular Integral Equation

Let the crack extension profile be given by
X =c+g(x), y=£(), (20)
where r measures length along the curved crack; see Fig. 6. Then
0(r) = tan"l(£1/g"). (21)
Denote by Ugg and Tre the hoop and shear stresses, and require that
99 1T . =0 on the curved crack extension. (22)

88 80

On the other hand,
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% o 445 =o' +8'
ST 88 ¢l

x 8129 (S) (-;q)n + ty'), (23)

where the overall complex poten-

tials are
& =048, = 8y + B,
P =9 4+ 3 (24)

o w0 =R ?
with similar expressions for V.
Consider now distributed
dislocations of density o(r)
on the crack extension path,
‘\Q? where b dn (2) is defined by

Figure 6 b o= %;f[ur} + i[ue]}dr. (25)

Stress~free condition (22) and Egs. {(23) and (24) yield

g : — -
Lo + ¢ + ela{s)(z@}'}' +etdr+ ol + 3+ o200 Gen 4 ¥) =0, (26)

where ¢ is the length of the extended part of the crack. With zg = ¢ +
g(r) + if(x) and z = ¢ + g(s) + if(s), Eq. (26) becomes

3 L
L 53 -
[ EAETRAlE D o Tt svateddie + Ogm(8) + 1T o (s) = 0, (27)
5 s ~ ¢ o 2 £ T
where

1 i28(g) hir,s) =
g € {h(r,s))24

Ly(r,s;0(r)) = afr) fh(

- 1 1208(s) 1 -
+ %(r) [Mr’s) + e h(r,s)]

lg(e) —glx) + 1i(f(s) - £/ (s~1), (5 * 1),
hir,s) =
g'{s) + if'(s) (s = 1),

a(r) ~ 3(x) + o210(s) () (z(s) +z,(x))
2(s) +29(r)  2(s) +3,(r) L (2(s) +2,(x))*

Lz(r,s;a(r)) =

T ra@ ]t %t R O ey e 7 - g,
0
and

Cgals) + 1T g (s) = 81 + B + &2200) zam 4 1y (28)
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The stress intensity factors at the extended crack tip are given by

K ¥ty - Ben* @ -0 (4,05 san}. 29

FRACTURE CRITERIA

To calculate the branched-curved extension path of a pPre—existing
craek, a fracture criterion is needed. There are several criteria of this
kind in the literature, which include: (1) the maximum hoop stress cri-
terion [33]; the maximum strain enexgy density criterion [34]; the crite-
rion of local symmetry [10,12]; and the criterion of maximum energy re-
lease rate which relates to Griffith's original ideas {35,38]. Except for
the last ome, all these criteria are 'local® ones. In [24] I have dis-
cussed the relarion between the second law of thermodynamics in the sense
of Gibbs and a more "global" fracture criterion which has a strong bearing
on the last ahove criterion. The condition of local symmetry, however, is
quite easy to apply, and in most cases leads to results which are in close
2greement with the maximum energy release rate criterion. Here, as in [2],

this criterion will be used.

RESULTS AND DISCUSSION

It can be shown that in most casges the maximum of Ki occcurs when KII
is almost zero, Hence the criterion of local symmetry is essentially the
same as the criterion of maximum KI' For the numerical calculation, we
follow [2,32] and solve (27) incrememtally, i.e., we find the orientation
of an incremental straight growth such that KI is maximized. Then we fix
the incremental length such that KI = Kb is satisfied.

Calculations show [2,32] that for uniaxial compression similar to the
one shown in Fig. 2, the crack extension begins at an initial angle of
about 70° relative to the direction of the pre~existing crack, and then
curves and becomes parallel with the axial load. An interesting result is
that, if some lateral tension also exists, then after a critical length is
attalined the growth process becomes unstable, i.e. the crack extends spon~
taneously in the direction of the maximum compressive stress without an
increase in the axial load. Figure 7 illustrates this. [In this figure,
0y 4s the minimum principal axial stress, and 0, is the maximum principal
stress.] This important result can be used to explain axial splitting of

brittle solids, the phenomenon of sheet fracture or exfoliation which
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refers to cracks running

!O[ parallel to the free sur-

face in rock masses, rock-
burst in deep mines due to
coupled crack growth and
buckling of rock slabs,
and surface spalling, all
under far~field compressive
) loads; see Nemat-Nasser and
Q 2 4 ) 8 Horii [2] for illustrations

1/C and more discussion.

Figure 7
PERTURBATION RESULTS

For small deviations from straightness, crack extension paths may be
astimated using a perturbation scheme; see {10,20,22,23,28]. as pointed
cut by this writer [23], the Square-root singularity of the strain field
near the tip of the pre-existing crack prior to crack extension requires
that the crack extension path be defined by, Fig. 8,

Y=<.->X+nX3/2+yX2+“~, (30)

where w, n, ¥s«.. are to be calculated. With this crack path, and with 2
very small relative to 2¢, one may express the stress potentials, ¢ and v,
in Eq. (23) in terms of a set of stress potentials, Fj and Wj, i=0,1,...,

o

b
L "”’”\{ h\
ARG ﬁ J/E/;%,vai Ro

Figure 8
193




whose common cut in the Z-plane, Z = X + i¥, is along the straight line AC,
Fig. 8, and which are of the order of lg, where X, is very small compared
with the extended crack length, £. The integral equation (26) may then be
reduced to a Sequence of integral equations for the stress functions Fj and
Wj, and these equations can be solved consecutively, leading to explicit
expressions for KI and KXI at the tip of the extended crack, where the
crack path extension is given by (30). Withow = a=~8, and 8 defined in
Fig. 8, one obtains [22]:

L LR R CLE

2 ok ok

where Ly = 2c¢ is the initdial crack length; T is the in-plane far-field
stress difference, acting parallel to the pre-existing crack, i.e., T =
(R ~1)o in Fig. 8, and ky and k, are the stress intensity factors for
Yodes I and II at the tip of the pre~existing crack before crack extension,

From (30) and {31) it is seen that when ky, # 0, then there is an
initial kink, followed by a smooth curve. In Fig. 1, the pre-existing
crack Azﬁz is not at a right angle with the edge AA,. This introduces a
nON-zZaro k2 at Bz. Hence, crack extension in this case involves an initial
kink.

‘When T = 0 and k2 = 0, Egs. (31) show that g = 0 and n = 0, but not
necessarily yv. In this case, when akz/aL0 # 0, smooth crack curving with
profile

Y = 5 %y
Y = -gxX ~ {E;-gii} x2 + 0(x¥?) (32)

is possible. In Fig. 1, the pre-existing crack AB is normal to the edge
AAz. This produces, for very small initial crack length, k, = 0. However,

“kz/ala # 0, and hence smooth crack curving occurs at almost zero initial
kink angle.
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