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ABSTRACT

The formulation for general three-dimensional small
strain plasticity analysis is presented. A finite element
computer code has been developed to carry out the analysis.
General hardening characteristics are included as an input
option to the program allowing for the study of a wide class
of materiails,

An example through crack problem is solved employing
three different hardening assumptions (isotropic, kinematic
and mixed). The plastic deformation in the region of the
crack front predicted with each of the models is compared.
While the predicted results are similar, several fundamental
characteristics of each assumption can be observed. Residual
deformation zones are also calculated as a measure of the
extent of plastic deformation. The qualitative differences
between hardening assumptions are consistent between the
Plasticity measures allowing for direct comparison with

eéxperimental observation.
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INTRODUCTION

The study of ductile fracture processes has been widely
discussed in the literature during the past decade. Theo-
retical, numerical, experimental and many combined studies
have been presented. Fracture criteria have been proposed
based on many controlling quantities (e.g., stress, strain,
energy, displacements, etc.) both on global and local scale
levels. Without exception, all of these criteria show a
marked thickness and geometry dependence limiting their
predictive capabilities. While some of the proposed criteria
have been successful at predicting certain fracture phenomena
for mildly ductile specimens, the geometry dependence of the
controlling parameters makes application of these theories to
practical specimens extremely difficult. The purpose of this
study is to investigate the nature of the plastic deformation
near a three-dimensional statiohary crack front in a ductile
material. Due to the three-dimensional nature of ductile
fracture, it is essential to accurately model the stress-
strain response for a general three-dimensional crack problem.

The majority of the studies on the plastic deformation
near a crack are based on two-dimensional approximations.
While these studies are a necessary first step in the study
of ductile phenomena, several fundamental effects remain
inadequately modeled. For specimens thick enough to be

modeled by plane-strain, ductility effects are usually not
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significant. Most engineering metals exhibiting significar-
plasticity effects are relatively thin. It is tempting,
therefore, for many applications, to employ a plane-stress
analysis. While the gross specimen behavior may be reason-
ably predicted with such an approach, the local effects near
the crack will not be adequately modeled. For linear elastic
materials it can be shown that the stress-strain state near a
crack front in three-dimensions is essentially plane-strain
except at the intersection of the crack with a free surface
{1]. For problems involving plasticity, the incremental
deformations during loading will exhibit the same character-
istic behavior as an elastic body with an elastic modulus
equal to the instantaneous tangent modulus [2]. The local,
instantaneous response near an arbitrary crack front should
be one of plane-strain independent of the specimen thickness.
A fully three-dimensional analysis must be employed, therefore,
to accurately model the local plastic response of a cracked
medium,

To examine the local deformation response of a three-
dimensional elastic-plastic crack specimen, a finite element
code was developed. The formulation employs an incremental Jy
flow theory of plasticity with an arbitrary, "Mixed" hardening
Tesponse. Two-dimensional studies have shown that different
materials exhibit different hardening properties that can be
load and geometry dependent. The generality of the hardening

law employed allows for user determined hardening input. The

initial code generated for this study assumes infinitesimal
displacements and strains. The formulation is easily
modified, however, to account for finite strain effects.
This will be the topic of a later study.

The program was tested on many problems of uniform
expansion and simple geometric configurations with analytic
(or quasi-analytic) solutions. These test runs facilitated
the debugging of the convergence algorithms and iterative
routines. The present study focuses on a center-cracked
sheet made of an aluminum alloy similar in nature to 7075-T6751
aluminum. The response assuming kinematic hardening,
isotropic hardening and a combined law is found. The results
demonstrate that the local yield effects are moderately
sensitive to the hardening law. For the range studied, how-
ever, there is not significant enough differences between the
models to distinguish a preferred approach. Since reverse
yield and cyclic loading have not been investigated, large
distinction between hardening models is not anticipated. The
similarity of the predicted results, however, serves as a
Strong indication of the numerical consistency of the solu-
tions.

A comparison was made between the vield zones on the
free surface predicted at maximum load with the von Mises
stress yield criterion and the residual contractions predicted
after unloading. Good correlation was obtained in that the

yield characteristics predicted by both measures were




qualitatively similar. The predicted zones using the stress
at maximum load were larger than the residual contraction
Zones as was expected. A contraction of 1.E-04 inches was
the smallest contour plotted as this is on the order of
resolution of both experimental techniques and the numerical

Tesults. While numerical correlations are purely qualitative

without experimental calibration, they do serve to demonstrate

the consistency and probable accuracy of the code and the
mesh employed.

A companion experimental study is currently underway to
compare the predicted yield characteristics with the experi-
mentally observed deformations. The difficulty in any such
study is the necessity of achieving significant plastic
deformation without slow crack growth. The phenomena of
slow crack growth is an effect which must be modeled inde-
pendent of the deformation response. While slow growth is
undoubtedly controlled by the local deformation state, the
process is g fundamentally different physical failure
mechanism. The validity of the plasticity model being
employed must be ascertained independent of the fracture

characteristics of the specimen,
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CONTINUUM PLASTICITY FORMULATION

The goal of continuum plasticity theories is to provide
a relationship between the incremental changes in deformation
and stress as a material undergoes irreversible deformation.
Due to the complex nature of the deformation fields
generally produced in a solid, most mathematical theories
attempt to extrapolate the phenomena observed in uniaxial
tensile tests to more complex stress states., While many such
formulations have been advanced, few provide constitutive
relations which are practical for analysis of complex struc-
tures. Confining the discussion to incremental plasticity
theories which are strain rate independent, essentially all
the theories currently employed differ only in the hardening
assumptions made and the choice of a yield criteria. The two
most widely accepted yield criteria are the von Mises (Jz)
criteria and the Tresca criteria. The Tresca criteria is
mathematically simpler to employ, however, the yield surface
exhibits singular points which are undesirable numerically.
While these points can be handled with Lagrange multipliers
[3], this approach renders the analysis as complex as the
von Mises criteria. For most engineering fracture problems,
it is generally agreed that the von Mises criteria more
accurately models a wider class of materials in more practical
applications than the Tresca criterion [4,5].

The incremental theory of plasticity employed in this




work is based on the classical rate proportionality assump-
tions and J, flow theory. While the mathematical details
vary with the choice of vield criteria, the salient features
of all incremental theories are the same. This discussion
will, therefore, be confined to the specific theory employed
in this work.

Assuming stress-strain rate proportionality and Jz flow

theory (which assumes the plastic deformations are incompres-

sible) the Stress-strain rate relations can be written as

[6]
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components,
v is Poisson's ratio,
E is Young's modulus,
S.: = g.. - 1 . i i
ij GIJ K'Upp 513 are the deviatoric stress
components,

aj§ are the coordinates in stress space of the yield

surface center,
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P _ ) R ;
Sij Sij ai3 are the deviatcric stress components

measured relative to the current yield

center,

g = % Sijsij is the effective stress,

¥ o ? t 1 H 3 v
ag Y % Sijsij is the effective stress relative to the
current yield center,

Gy is the current yield stress, and

> denotes time differentiation.

Due to the incompressibility condition, the hydrostatic strain

rate is proportional to the mean Stress rate and is given by

. 1 - 2v »

pp T TET Opp (2)
The function f(oe) is dependent on the uniaxial stress-strain
curve and will be discussed subsequently. For a von Mises
(JZ) material, the center of the vield surface moves at a
rate proportional to the projection of the stress rate vector
onto the local normal to the current yield surface and can be

written as
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where B varying from 0 to 1 will model hardening behavior
from kinematic (B = 0) to isotropic (B = 1).

The function f(ce) is derived from the uniaxial stress-
strain curve. For an uniaxial specimen, equation (1) reduces
to

3. - o _2 (1 + vy . .
Y(Eaxial etransverse) T E Og * f(Ge) TeTe (4)

in the plastic range. Thus,

L2, . ‘
f(Ue) 3(Eaxia1 Etransverse)/geue (%)
Invoking incompressibility (i.e., étransverse = - % éaxial)’

the function f(oe] can be written as

f(ce) Eplastic/gece (6)
If the uniaxial stress-strain curve is expressed in a multi-
linear fashion as shown in Figure 1, the stress-strain rela-
tion is
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From equation (7), the plastic strain rate is given by

. Olm&e
€plastic 5 E (9)

and thus from (6)

a
£(o,) = Elg-; (10)
Equations (1), (2), (3) and (10) provide a complete set
of elastic-plastic constitutive relations. Together with
the equilibrium equations and the strain~-displacement rela-
tions, a governing system will be formed. It is important
to note that the constitutive formulation outlined above is
acceptable for finite as well as infinitesimal strains.
Also of importance is the fact that this formulation is
strain-rate independent. This assumption appears to be
realistic for most engineering metals at room temperature
{or cooler). For high temperature problems a rate-inde-

pendent formulation is dubious.
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FINITE ELEMENT STRESS ANALYSIS

Equations (1), (2), (3) and (10) provide the fundamental
relationships between stress and strain rates. The equilib-
rium conditions (governing equations) for a continuum body

in the absence of body forces and inertia effects can be

written as

aaij/axj =90 (11)

with the boundary conditions

and (12)

5 R
U. = u. on §

where Ti are the specified loading rates on the boundary

- . - ’\
experiencing applied tractions (ST) and u; are the velocities
specified on the remainder of the boundary (Su]. Utilizing

B R &
the standard strain-displacement relations

€j5 = %(Sui/axj + auj/axi) (13)

f
The details of the analysis will be limited to infinitesimal
Strains for mathematical simplicity. The solution procedure
with flglte strains is identical, however, the notational
complexities are considerable.

and either employing the Principle of Virtual Work for in-
crements of displacement or by performing the standard
Galerkin technique on the governing equations, (11) and {12),
the finite element equations governing the nodal velocities,
?, can be written in terms of the loading rate vector, R, in

the form

K(u) - g = g = (14)

The standard finite element assumptions made are given by

LNy
E-B-U

(15)
g =D - ¢

w=- 3 [ hwosa

elements element area

where N are the shape functions and two dimensional analysis
has been assumed (as implied by the area integral). The set
of rate equations (14) will be integrated one load increment
(AR) at a given time to determine the corresponding new
displacement increment, AU. The Newton-Raphson ot tangent
stiffness solution procedure is employed. At load increment

L + 1, the initial solution Agi+1 is found from




i
g(gL) : A9L+1 = A§L+1 (16)

The 'new" displacement is then used in the stiffness matrix,

m

K(UL * E AU;+1), and a new correction is obtained from
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where the integral is approximated using Simpson's rule. The

procedure is repeated until two convergence criteria are met:

pi+l]? |

TLea] /AR < g
and (18)
i+1]2 2
{§L+1 /{BL+1 3

where RL+1 is the total 1oad at step L + 1,
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In this study, 20-node quadratic isoparametric elements
were employed exclusively. All integration was carried out
utilizing 3 x 3 x 3 Gauss-Legendre quadrature formulae.
Strains were calculated at the Gauss integration points in
each element from the strain-displacement relations of (13).
Stresses were cumulatively calculated at the Gauss points
from the stress-strain relations.

Directly calculating strains and stresses from the finite
element relations (15) at points on element boundaries in-
herently yields poor results. This is especially true when
CO shape functions are employed. A superior approach is to
calculate the stresses and strains at the Legendre quadrature
points and to extrapolate or smooth them to the boundaries.
This approach has been shown to yield very accurate results
for a wide variety of geometric mappings. In this study the
smoothing technique as developed in [7] is employed for all
stress and strain evaluations.

Currently, four methods of accounting for the crack tip
singularity are widely employed. Each of these methods is
based on an established technique in LEFM (Linear Elastic
Fracture Mechanics). The first method, the enriched element
approach (where the shape functions are modified with the
asymptotic crack solution vanishing at the nodes) has been
employed both for the multilinear stress-strain models and
for power law hardening models [8]. Enriched elements based

on the power law hardening model assume that the enriched
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element is fully yielded. This assumption is physically
unrealistic, especially behind the crack tip. The singular
solution employed for the power law hardening case also assumes
a circular yield zone which is far from realistic. The solu-
tions generated using enriched elements and a multilinear
stress-strain assumption are reasonably accurate providing a
judicious choice of enriched element size and surrounding

grid characteristics is made. The major drawback to the use
of enriched elements is the computation time required to obtain
convergence due to element incompatibility. The second method,
the most basic approach, uses a very fine mesh near the crack
tip and employs only conventional elements., This method pro-
duces reasonable results far from the crack region but ques-
tionable locatil results. Convergence is usually rapid, there-
fore, gross specimen behavior can be obtained quickly. With
unrealistically fine grids, good local results can be obtained
(except in the elements bordering the crack tip) but only at
the expense of computer time [9]. The third method is based
on the fact that if isoparametric elements are chosen with
midside nodes, judicious choice of the placement of these
nodes results in the inducement of a /T term in the displace-
ment shape functions [10, 111. These elements are essentially
equivalent to enriching the shape functions, however, element
compatibility is preserved resulting in faster convergence.
The fourth technique of modeling crack tip behavior is through

the use of hybrid elements where elements bordering a surface
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with traction boundary conditions are forced to satisfy those
conditions exactly and the elements bordering a surface with
displacement boundary conditions are also forced exactly. The
element boundaries are then matched by using Lagrange multi-
pliers in the variational equations to ensure element equilib-
rium and continuity in an approximate sense. Little work has
been done on comparisons of hybrid methods to conventional
methods in elastic-plastic crack problems, however, the tech-
nique was applied with questionable success in [12]. The
preferred method in the literature is still to use a very fine
mesh and standard elements. Complete discussions of the above
methods can be found in [13-157,

In this study, only conventional 20-node elements are
employed. Studies on linear elastic through-crack specimens
has demonstrated the accuracy of this approach for predicting
local stress responses. Since the details of the local
singularity are unknown in the plasticity case, this approach
is the most likely to delineate the characteristics of the
numerical solution without the influence of singularity
assumptions. The grid employed is shown in Figures da, 4b
and 4c. The accuracy of the results predicted by this grid
are discussed in [16] for the linear elastic case. The choice
of grid characteristics is based on the convergence study
cited above. Since there are no known three-dimensional
elastic-plastic bench mark solutions available for comparison,

linear convergence studies appear to be the most reliable




indicator of mesh accuracy. Few numerical solutions have been
presented in the literature for three-dimensional elastic-
plastic crack problems. The studies that have been done have
been limited to initial stress approaches (e.g., [17]) or de-
formation theory approaches (e.g., [18]). These were severely
limited in grid density due to computational restrictions,
therefore, no comparison has been attempted. The computational
requirements of the present approach are extreme and will be

discussed subsequently.
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PROBLEM DESCRIPTION AND FINITE ELEMENT MODELING

The problem chosen for study is that of a center-cracked
plate with a through crack. The plate has dimensions of 7
inches in length, 3.5 inches in width with a thickness of .5
inches. The applied load is assumed to be normal to the crack
orientation as shown in Figure 2 (i.e., Mode I loading). The
material properties chosen are typical of many aluminum alloys.

The assumed elastic properties are

E = 10.5 E + 06 PSI
v =0,3
Gy = 59.00 E + 03 PSI

The uniaxial stress-strain curve models the behavior of 7075-
T7651 aluminum. A trilinear approximation is employed in the
analysis. Both a typical experimental curve and the trilinear
approximation are shown in Figure 3. The effect of hardening
behavior modeling is studied by varying the hardening
parameter B, defined in equation (3). Isotropic hardening

(B = 0), kinematic hardening (8 = 1) and a mixed state

(8

i

0.5) were modeled.

The finite element grid employed consists of 96 20-node
isoparametric elements with quadratic shape functions. No
"singular" elements are employed due to the unknown nature of
the crack front singularity jn plasticity. The grid is shown

in Figures 4a, 4b and 4c. Computationally this grid is
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extremely expensive. The convergence studies cited previously
have demonstrated the advantages and desirability of this
approach. The grid has 1872 total degrees of freedom and
requires approximately 1 hour and 13 minutes of CPU time on a
VAX—11;780 to complete each iteration. Where significant
plasticity occurred, extreme runtimes where required (often
on the order of several days). While the current approach is
believed to be very accurate and reproducing the necessary
resolution to accurately describe the three-dimensional
elastic-plastic crack phenomena, the complexity of the calcu-
lation and extreme computational requirements should be
appreciated at the outset. Three-dimensional elastic studies
have indicated that these computational requirements are
necessary for accurate solution [7]. It is dubious that
simpler approaches will be able to predict the local fields

with any degree of confidence.
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RESULTS AND DISCUSSION

The yield zones predicted at the maximum load for each of
the three hardening models were calculated and plotted both on
the free surface and on the midplane. The stress components
were calculated in each element at the quadrature points and
interpolated to the surfaces using the technique discussed
previously.

Figure 5 is a plot of the von Mises stress contours pre-
dicted on the free surface at the maximum load assuming an
isotropic hardening law. The maximum plastic radius predicted
is 0.541 inches. The extent of the plastic zone ahead of the
Ccrack tip is 0.169 inches, predicting a fairly rotund zone.
Figure 6 is a plot of the von Mises stress contours predicted
on the free surface with a kinematic hardening model. The
maximum plastic radius of 0.524 inches and crack line extent
of 0.148 inches are both significantly less than predicted
with isotropic hardening. The results assuming a mixed har-
dening model are shown in Figure 7. The maximum plastic radius
of 0.544 inches is almost identical to the isotropic model,
The crack line extent predicted, however, is much less than
those predicted with either a2 kinematic or isotropic model,
The predicted zone is much narrower than the other models
demonstrate. Tt is unknown whether this phenomena is due to
the inaccuracies of the numerical results or the physical

assumptions. The narrower predicted yield zone is consistent




with the dilatant stress field anticipated in front of the
crack.

Figure 8 is a plot of the von Mises contours predicted on
the midplane at the maximum load with an isotropic hardening
model. As expected, the zone is smaller than the surface zone,
The yielding along the crack line is, however, almost identical
to the surface prediction. Figures 9 and 10 show the predicted
midplane zones for the kinematic and mixed hardening assumptions
In both cases, the yielding extent ahead of the crack tip is
very close to that predicted on the surface. The differences
between the maximum radii of the predicted midplane zones are
less than the surface zones. This phenomena is consistent with
the smaller amount of plasticity and the nearly plane-strain
conditions on the midplane.

One approach to predicting the extent of plastic deforma-
tion is to measure or calculate the amount of surface contrac-
tion or‘residual deformation on the surface after the specimen
has been unloaded. Tnside the plastic region measurable
Tesidual deformation should exist. Figure 11 is a plot of the
surface contraction predicted after the specimen was unloaded
to zero applied load assuming a kinematic hardening model.
Contraction contours of 1.E-04 inches to 5.E-04 inches are
shown. The lowest contour plotted (1.E-04 inches) is on the
order of the deformation resolvable in the laboratory and is
also on the anticipated accuracy of the finite element method

being employed. The predicted plastic region is smaller than
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that predicted by the von Mises stress measure discussed above
(Figure 6). This is not unexpected as the stress criterion is
more sensitive to minimal plastic deformation. The yielded
extent predicted ahead of the crack tip is larger, however,
than predicted above. The deviation from a dilatational
stress state ahead of the tip will be detected sooner by the
residual deformation than by the effective stress {a large
deviatoric stress field must be present to create a von Mises
stress larger than the yield stress whereas any deviation in
the neighborhood of a significant residual field will cause
surface contractions). Figures 12 and 13 are plots of the
surface contours predicted with isotropic and mixed hardening
models. Consistent with the von Mises stress predictions, the
zones with an isotropic model are larger than those predicted
with any of the other models. The mixed hardening model pre-
dicts zones which are similar to the isotropic zones with less
vielding directly ahead of the crack tip. All three models
demonstrate more residual deformation ahead of the tip than

would be expected from the stress results,
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CONCLUSIONS

The finite element formulation for general three-dimen-
sional elastic-plastic bodies undergoing infinitesimal deforma-
tion has been presented. A computer code has been developed
and an example crack problem was solved with three widely
employed hardening models. The crack front yield zones pre-
dicted are very similar in size and shape. For many applica-
tions, the differences may be negligible. Significant varia-
tion in crack line extent yielding and surface curvature was
discovered. It is unknown at present as to which model will
more accurately describe different metals of interest to
engineers. The predicted differences are so slight, however,
that full three-dimensional experimental studies will be
needed to discern a valid model for specific applications.

To compare theoretical and experimental predictions, it
is proposed to measure the residual deforﬁation on the surface
of the specimen in the unloaded state. The theoretical study
presented above demonstrates that the finite element predic-
tions are qualitatively realistic and sensitive to hardening
characteristics. Comparison with experimental results will
delineate the grid characteristics and hardening models which
best model specific geometric and material applications.
After successful "tuning" of the finite element model, a com-
plete description of the stress and energy state in a cracked

body can be predicted with confidence. Once fully three-
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dimensional stress fields are predicted, ductile failure
theories can be tested and skeptically compared without the

bias of unrealistic analytical approximations.
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Figure 1: Multilinear Approximation For A Uniaxial Stress-
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Figure 2: Through Crack Geometry And Loading.
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Figure 3: Uniaxial Stress-Strain Curve For 7075-T6751 Aluminum.

Figure 4a:

Finite Element Grid - Coarse Outer Region.
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Figure 4b:

Figure 4c¢: Finite Element Grid - Near Tip Region B.
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Finite Element Grid - Blowup Of Region A.
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Figure 8: wvon Mises Stress Contours Near

The Crack Tip On Specimen Midplane At
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