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INTRODUCTION

Up to now the near-tip fields for elastic-plastic crack growth have
been studied relatively fully for mode-III problems and for elastic-per-
fectly plastic material. For this material Slepyanfi], GaoEQJ and Rice
et al-[aj have obtained the near tip fields for the mode-TI steady crack
growth in plane strain. For power hardening material, the near-tip as-

[4,51

ymptotic steady state solution has been obtained by Gao, Zhang and Hwang
for mode-III and by Gaoc and Hwang[aj for mode-I in plane strain (with v=3).
But no soluticn is obtained for mode~I in plane stress in case of power
hardening or nonhardening materials.

In a finite element analysis for mode-III and mode-I steady crack
growth in plane strain, Dean and Hutchinson[7] adopted a mesh moving with
the crack-tip. Here based upon the JQ—flow theory, the method is adapted
to the analysis of mode-I problem in plane stress under small scale
vielding.

FINITE ELEMENT ANALYSIS

All quantities are nodimensionalized and denoted by a bar "<". The

nondimensicnal coordinates, displacements, stresses and strains are
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respectively, where k —— stress intensity factor, cdwm»yield stress and
G — shear modulus.

The material hardening is charactenized by

- -5 = 3gP (2)
e

where Ee — the equivalent stress, Eg = deE«-the equivalent plastic
strain, and N — the hardening exponent.

The variational equation of static equilibrium is
1151 s(zraR=r (%) s (ayas (3)
in which {f} denotes the surface load. Using Hooke's law
{6} =[B°I({e} ~ (P} - (w)

and after finite element discretization, we obtain the nodal equation of
2quilibrium

[K®1{0} = (F} + (FP) (5)

where [K%7 -—— the matrix of structure's elastic rigidity, {0} — the vector
of nodal displacements, {F} -— the nodal surface lcad, and {FP} — the
equivalent plastic nodal load. Eq. (5) has to be solved by iteration,
since {FP) depends on plastic strain {Ep}, which is unknown prior to solu-
tion.

The finite element mesh is shown schematically in Fig. 1, in which
each of quadrilateral contains two contant strain triangular elements.
The middle point of common side of two neighboring triangles is called the
"optimal stress point". The stresses at a "optimal stress point" in plastic

region are determined by integration along the negative X-direction over
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the history described by all of the "optimal stress points" at the same
height ¥ and to the right of the point considered.

The dimensions of the region for computation are taken as: %X. = 1.2

D
§A = -6.0, §B = 8.64. The mesh consists of 4183 triangular elements, with
4374 degrees of freedom, The nondimensional size of the near-tip smallest
element is 0.002, which forp nonhardening case is 0.7% of the distance to
the elastic-plastic boundary ahead of the crack on the x-axis (i.e. size of
plastic region in x-direction). The region for computation is more than 25
times larger than the size of plastic region. Comparison of the results
which are obtained for different varying sizes taken for the region, shows
that our region is big enough so that the small scale vielding condition be
approximately fulfilled.

The tractions on the boundaries AB, BC and CD are derived from the

elastic singular K-field

G., = fij(e)/og;g (6)

1]
The incremental constitutive relations are
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where {As} — the stress deviator increment, [I] — 4xL unit matrix, {Ae}—
strain deviator increment, {n} — the unit vector normal to the yield
surface in Stress-space, and [ = AGE/ AEE —— slope of the hardening curve,

for nonhardening material £= 0. {A3} and {Ae} are

51T = Bas ofE . W5 AE s -
{AS}T = {80 ~40 , 83, Afm’ Agm, fﬁrxy} . )
{Ae}t = {A€§-Asm, Aey—Aem, AeZ*Aem, ny/ o F
respectively, here Aam and Agm denote the mean stress increment and the
mean strain increment, respectively.

The final state of each increment step is required to fall exactly on
s . . 8 - .

the material hardening curve. Following Rice and Tracey[ ], this require-
ment is satisfied for nonhardening material by taking
{§1}+{Aé}

(9)

{n} =
!{51}+{Aé}|
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where {sl} is the stress deviator of the initial state of the increment

step considered. For hardening material, this requirement, i.e.,
1/N
= AT (G #AG ) = 3(5PoAzP {
(oe+ 9, (ceone) 3(€e+AEe) (10)

can be satisfied by taking {n} the same as (8), and £ to be

3A6€
¢ = T - (11)
/&{n} (Aé}—Aoe
where the equivalent stress increment
- . 1/N PO, TR )
Ao, = (oe +/6{n}" {Ae}) - T, (12)

For plane stress, only Ex’ Ey and ;xy can be determined from inplane
displacements u and v, with Ez, and hence {fe} in (8) undetermined. In
view of this difficulty, which does not exist for plane strain, we iterate
the mean strain Em together with displacements {{} , with Em determined in

each increment step by the relation of volumetric deformation

1-2v -

"n T T ATy (13)

Computation is made for materials with ten values of N, namely, N=0.9,
0.8,..., 0.1, 0. Begimming from the elastic material (n=1), the solution of
higher hardening case is successively used to start the iteration for next
lower hardening case.

The error of two consecutive (i~1)~th and i-th iterations is estimated

1

by
| i)
¥ o P L QR S N (14)
u§1) #1

here n is the number of degrees of freedom. The convergence is considered
satisfactory when c(l)go.ooou. The number of iterations required is about
10 for materials with large N, and about 30 for elastic-perfectly plastic

material.
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CONCLUSION Fig. 1 Coarse representation of finite element grid

(1) For mode-~I crack growth in plane stress, the geometry of the ac-
tive plastic zone depends upon the hardening exponent N significantly.

(2) The near-tip fields for mode~I crack growth in plane stress seem
to be quite diffevent from the modified Prandtl fields for plane strain.

(3) The lower the exponent N, or the smaller the yielding strain
o4 /b is, the higher will be the ratio K /K » hence the larger will be the

resistance to crack growth and the longer the stable crack growth will last.
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Fig. 2 Variation of the plastic zone with exponent N
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