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ABSTRACT

It is presented in this paper a nonlinear line-spring model For the

ciastic-plastic analysis of surface cracks with particular reference to t+h

work hardening materials. For the cases of surface cracks commonly occurrin

‘iin plates and cylindrical shells, the J-integrals are evaluated and the

2531

ults are compared with those derived by D.M. Parks.
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INTRODUCTION

Owing to its three-dimensional nature, there is no complete and accu-

& elastic-plastic solution available for surface cracks. Barly in 1472,

‘ice and LevyLl] proposed a linear line~spring model for the elastic analy

of surface~cracks in plates. This approach has been proved to be reli-

ile by a comprehensive three-dimensional finite-element calculation hy

. p £2] . iv i

“iju and Newman ]. Recently, some researchers have renewed their interest
s [ 36 - s y : s
this mcdelL }. Parks tried to extend this model to the elastic-plast

walysis of a surface crack and asserted that this area is worth while to

£y

. 3,47 - . g . :
xioptu’ o in references [5] and [{6], the nonlineanr consititutive rela-

tien of line-spring model was established adepting the D-M model of adge

t1

:k strip, and the elastic-plastic analysis of surface cracked plates

P
i-M model. The approximate generalized yield surface used by ParksLJ} is

tentatively made. In the present work, we devote our attention +to the

onlineap line-spring of work hardening material with Ramberg~Osgood con-

tutive relation, and take account of the plastic effects on crack tip

ed so that the uncracked accurate vield surface may be regainad

1/t>0. The pectified vield surface is +then linearized approximately and
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transformed the line-spring constitutive relation of incremental form into

the total deformation expression.

NON-LINEAR CONSTITUTIVE RELATIONS FOR THE LINE-SPRING
OF WORK HARDENING MATERIALS

The semi-elliptical surface crack of length 2¢ and depth a as shown

in Fig. 1(a) is replaced by a through z

crack of length 2c¢ with distributed line-

F l 5 g
springs connecting the two crack sup- 7 ‘\\\\ } ’*\”

faces, as shown in Fig. 1(b). The cons- (a L._igi_an x .
“©
titutive properties of the line-spring ,L ’F 4:L”

are simulated by an edge crack plane
Strain strip as shown in Fig. 1(c).

First, consider this edge crack

strip subjected to the combined action
of membrane force N and bending moment
M. It is assumed that material obeys

Ramberg-0sgood stress-strain relation
e/es = (0/0g) + ala/o )"

where a and n are material constants, 0g the yield stress, and £€gq = JS/E.
For the edge crack strip subjected to the membrane stress oy = N/t

only, the numerical fully plastic solutions were given by Shih et al.using

finite element analysisg7]. The plastic stretch §F induced by the crack

is expressed by
& = 6Pt = B1chy(z,n)oy, (1)

where g=a/t, BM=GM/GS:N/toS, 81 and hy(z,n) are given in reference [7].
When the edge crack strip is subjected to the combined action of ten~
sile stress Oy and bending stress UB’ its nonlinear constitutive relation
is generally described by increment theory. Suppose that the plastic
stretch 6P and the plastic rotation 6P are induced in the edge crack strip.

Then the increment of plastic work done on the strip is equal to

aw® = nasP + MaeP = to,dsP + t20,d6%/6 = 20 {Glal P} (2)
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where, WY = plastic work, {E}T = [8&,5&], and {EP}T = [EP,EP], with
;ﬁ = GM/US, Eé = cB/oS, P = Sp/t and oF = Sp/B. Assume that the work
hardening is isotropic so that the condition of hardening may be expressed

by

$(0y»05,2) — F(WP) = 0o (3a)
Then
a4 = (22 [do] = praw? (3b)
o

Making use of the orthogonal condition between the two stress systems, the

zeneralized plastic displacement increment d[ap} may be written as
d
a9} = angd ()
o

vubstituting Eq. (4) into (2) and rearranging, gives

A = ae/p 2050287 (5) (5)
g
thus 4 (Y = (5l as/renagrd) (5
g o

in which F' may be determined from the uniaxial tension curve. Introducing

the equivalent "univalent" stress Eé in the strip, we have ¢(Ee,;)-f(wp):o.
“onsequently, d¢ = _g‘%ed%: Frawf = F'tz’os'gedgp
wbstituting BEq. (1) into the above equation and rearranging, gives

o= 22008100, (cyn)ndh
5]

“hug, Eq. (5) becomes

35,

a3, =
4 (3P} = gachynonl 52} /12T (5) (6)

n which Eé may be determined by the generalized vield condition of the
wige crack strip. Rice obtained an approximate yieid condition according
“o the slip-line analysis of adge crack strip. We express the yield surface

it the following parametric form

{5} = {A(a,B)} and 2(o—B) = tga — tgB (73
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To simplify numerical work. The yield surface is linearized as follows:

L= 1 N~ .
Oy, = Oy + §k1(L) 0.+ The resulting yield surface, however, crosses the

B
daccurate uncracked yield surface as C»O[SJ

. To overcome this difficulty,
We can estimate the limiting yield condition from the limit analysis of a
simple beam. Then, the linearized stress Eé should approach to the follow-
ing value as z>0: Eé = Eﬁ + %kQ(g) Eﬁ. Thus, the approximate equivalent
Stress may be expressed by

Op = Oy + Ek(z) o (8)

where, k(z) = kilzig + Ki(z)(1—zT), r < 1. When the Gé is expressed by equa-
tion (8), equation (6) can be integrated to obtain the total deformation

expression

(2"} = B3¢0y (2,50 (D1 {0} (9)

k

(]

where [Dt] =

1
sk

w
sk
N

THE GOVERNING EQUATIONS AND J-INTEGRAL FORMULA

Generally, the nonlinear constitutive relation can only be expressed

in the following incremental form

d{q} = a{®} + A {P} = [seP] 4 { o} (10)

. ~€P o = e - MM
where [ot i = 205(1~v2)[C]/E+Blgb3(z,n)nce (0 W/==110}, [c] =
3G Q. [
N BM  “BB
te
g = EogA(C) gu(;}d;, gu(z) and gp(z) may be taken from reference [8],
Ce = 8e/t, and a, is the Irwin's equivalent crack size with plastic zone
correction[7].
From the D-M model solutions for thin plate with a through crack, as

shown in Fig. 1{(b), the following equations are obtained

- — 1
{q} = 4ogelBI(I(O) (3%} — jomx,tx S(DDI/EE (11)
o - — e i Ep S v
where I(x) = (o2 — x2)? — 5G6(X,c /2, G(x,c ) = S F(x,t)dt/s,
b P P 0 X
s = n/2~arcsin(1/cp), H(X,T) = F(X,1) ".G(g;gé)/(g; —T2)2, E; = cp/c,

i - o ) & i e N
x=x/c, { ¥} = [N /to,, 6M /t%0g], [B] = ] » ¥ =(1+v)/3(3+v), v=Pcisson’s
Y

1 ) 1 3
vatio F(X,t) = (1/m)inl((82 — %2y2 4 (T2 . T242 T2 — %232 (G2 . T232
atio F(x,t) (/n)n.((op x?) (2 t))/((cp )T el =€)
and
-, 1‘-‘ - e A ——— -
(moy/2 *-gooM(x)/ fé; ~ %2dx )2/32+2]w0§72 =
1
~S 0, (x)/ V&7 =% dx|/3s = 1 (12)
o B p

lifferentiateing the equation (11) and (12), we get respectively[gj

— - . i —— i S o
d{q} = (soge/t)BII(R)A {3} ~j HELD (DT + Ly (R)de)
0 (13)

and . - T -1 e e —_— -
(noyp/2 ~§0 oy(¥)/ (el = x)2 dx)(ndoy/2 ~ jo doy (x)/ (el — %*)%dx)

1
—— o —— e i — e
+ (s/3)(nd§§/2 - EgdGB(X)/(C; - %x)2d%) + Lpdep = 0 (1)

Substituting equation (10) into equation (13), gives

1
(Et/uosc)[m"l[siplq {a} + L H(X,t)d {E}d“{-51('£>ch = I(x)d {o*} (15)

fhus, the equations (14) and (15) constitute the basic incremental equa-
tions for this problen.
When the stress E; takes the form of equation (8), from equation (9},

the constitutive relation of line-spring is
{a} = {q"} + (P} = [s*P] (T} (16)

where [S%P] = [204(1v2)/EI[CT + B1zhy(z,n) S0 [Dy]. Substituting equa~
tion (16) into equation (11), gives

1
(Bt/hoge)[B1 ' [5%P1 (T} +50 HX,T) {0(D )T = 1(x) {5™) (17)

the resulting equation (17) and (12) are the basic equations in total
‘eformation expression for this problem.

tiow, we come to the formulation of J-integral and tearing modulus Ts»
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For the case of fixed force
J = = (18)
where U is the complementary strain energy. In the present case, it becomes

U =‘j(t§doM + t28ch/6) = t2GS.fEajd {a}. Substituting equation (16) into

the integral ang the above equation consecutively into Eq.(18), gives

J = (to2/E)(1—2)[510c' ] {3} + (a/(n+1)(1.1455)n)52B(C,n)) (19)
"y @ g ;
where [C'] = 2 g | a;u = 2,(te)g, (2o), B(z,n) = A'g + F(A+AK (D)o

A = Ch3(C,n)/(V(1—§)2+C2—C)n. When (g} is known, we can calculate

the J-integral from equation (19) and hence tearing modulus Tg.
NUMERICAL RESULTS

(1) Thin plate with a surface crack, subjected to remote uniform
uniaxial N”. The calculated stress distribution EM(;) of the line-spring
are given in Fig. 2. In this figure, the difference between the calculated
Stress distributions‘from Rice's linear and our nonlinear line-spring models
indicates the plastic effects. Plasticity, as a rule, lowers the stresses.
The normalized J ﬂv5§ curves for semi-elliptical surface cracks of cons-
tant length 2c=6t and various depth ratio a/t are given in Fig. 3. The

related results obtained by Parks{3]

are also included in the same figure

G , .
‘G%P —— Elastio- plasti / for comparison. It is apparent that

T~ ddnear - lastic the agreement is fairly good, but
451 2C=6 @Sy =g,

o t. %t =05 our results are somewhat lower than

Ow/Og=G.4 .
.40 3 those from Parks.

R=0.5 p=g

- (2) Cylindrical shell with
) S e a long longitudinal surface crack
30 ) on its inner surface, subjected to
o) .25 .50 75 0

x/¢ a uniform internal pressure p- When
the longitudinal surface crack is
comparatively long, the problem

becomes a plane strain one with a
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single line-spring element. Similap to
the procedure steps taken by Parks[aj,
the numerical results are given in Fig.y
and Fig.5. The effect of depth ratio —— Cur
4/t on the Ja.p curves with R/t=10,

R=mean radius of cylindrical shell and

ET/t o2

t=wall thickness of shell is given in

Fig.4. The effect of radius-thickness

ratio R/t on the J~p curves, is given
in Fig. 5. The results obtained by

[3]

Parks are also included in these

igs. It can be seen that in Parks'

curves there is an abrupt transition o

[ . 5 ¥ 35
from partial yielding to complete yield- as/a
ing of ligament, which is rather unnatu-
val, ]

—— Quur / ! i e

e Pk ™7 ’ | e Parks ™

0 A=0.5 R=5
Rft =70 / ) a/t =0.5 oy
Yt =6 — /

e
-~

ET/tad
(o)

HSY

CONCLUSION

We have developed a nonlinear line-spring model for surface crack
roblem of hardening materials based on the fully plastic solution of edge
rack strip. The model is quite suitable for the computation of J-integral
7wt tearing modulus Ty. Numerical results are compared with those by
tinzar elastic model and Parks' elastic-plastic model. It is shown that

- present model is easy to handle and yields reasonable results.
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