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ABSTRACT

By using Reissner's theory, a general solution for stress strain
sing the near-~

fields at crack tip in a bending cracked plate is obtained. U

tip expansions, the stress intensity factors in finite size plates for

s#metic and anti-symmtric cases are calculated.
INTRODUCTION

The study of bending cracked plate is one of the fundamental problems
In earlier literature the classical theory was used. In

it engineering.

study the problem with Reissner's

“nt years more investigators began to

ceory. In [2] and {31 the singularity of Reissner's plate was studied;
5 14} the expansions of stress strain fields at crack tip for symmetric

e were obtained. In [5] the expression of the first several terms inclu-

cmode T, I1 and III were proposed. In [8] an asymptotic solution of

bending, in [7], [8] and

o order was given. For a finite size plate in
calculated using Reissner's

1 the stress intensity factors for mode I were
vy. In [103, [117, the stress intensity factors in infinite plate with

twisting moment was calculated using integral transformation. But

B %11
far, the solution for mixed mode in a finite plate is not available.

THE GOVERNING EQUATIONS OF A CRACKED PLATE IN PENDING

plate containing a semi-infinite crack in bending is shown in Fig.1.

verning equations can be expressed

Y

fased on Reissner's theory, the go

s of three generalized displacements W<> wy and W as follows:
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3Tt s . =) B p o g (2.3) %
9x ay Ix Ay Fig. 1
where p = __EN? .. stiffnes
where = 12(1-y27y bending stiffpesg
C = z Gh shearing stiffness

Yy s wy Are rotations of the line

before bending, Among them,wx is the rotation in xp plane, Wy is the rota~
tion in yy plane, W is the deflection

and p is the lateral load Per unit
area.

According to [127, 1let

9F 3f
by = o= 4 21
= 9x Ay
0., = OF _ 3f oL
Y T 5y Tk it
Substituting {(2.4) into {(2.1) and (2.2), we have:
ol [DV?F+C(W~-F)J + oy ('E(1~~u)vzf~Cf'] =0
I h dy "2
L [Dv2rec(w—ryy — -2 r9<1«v)v?f~~cﬂ =9 (2.5)
9x - T Ix "2
This is Cauchy-~Riemann equations, from which it follows that:
2 (1-vIver - op LIDV2PC(-5)] = co(xety) (2.8)

where d(x+iy) is an @nalytic function. 1n {127 5

=0 is assumed. It is copr-
rect for cases

without singularity. As the crack tip is a singular point,
generally speaking, P{x+iy)=0.
Separating real and imaginary part in (2.8), we have:
V2F — Uk?2F = 4k ?Reo (2.7)
W= p ~~g VZF + Imo (2.8)
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sSegment perpendiculap to the middle surface

(2.9)
2C
where Hi? = D{1-v)

Substituting (2.4) and (2.8) into (2.3), we have:

(2.10)
DV2V2F = p

The governing equations (2.7)—(2.10) are equivalent tod(z;lz;fj;E;
for cracked plate, the bending fracture problems are ?eéuce o sol
fwo equations in terms of F, f with the boundary condltlons.‘ed L

The solution of equations (2.7) and (2.8) can‘be expr:prorPeQ;Onding
wm of a particular solution and the general soluticn of the c s
Homogeneous equations.

] follows:
The particular solution can be chosen as follo
(2.11)
fy =~Red , F1 =0 , W= Ind

The honm Ogern 1 { 64 2 g to oh and (?-8) are:
! eous equations cor esponding (2 }
& &

{2.71)
V?E — uk3f = 0
D .. (2.8")
= P o= Y*F
W = F G

1 : in series.
s 9(x+iy) is an analytic function. It can be expanded i

1 M > 'C‘". 6) (’2-;.4)
Pre s E +1 ¥ E {B +ic v {cosud + lsiny
3 x iy) = (Bw lau)z tﬁu 1 4
u

I

¥ LA = 3 gene! 1ze b =3t and generalized
1% s a1 lize
In olar coordinates the generali d splacements an en

tresses can be expressed as follows:

(2.13)
% 1 9F af A
| af = 13F _ f
p = 2F + =2 s Vg = ¥ 3% v
Yo ar v 3 6 .
P 5 - (7.14
atr bl £ 20y (z.11)
My = =D{V2F + (1~v)g}3‘+ (1“”)3f & 50 !
N2 1 3f,. (2.15)
- 2p {1.~\}a F ("1~\))“§“ (= “‘5”
MG = —~D[V2F D a2 3¢ 9
1 5E LR (2.16)
2 (1 3F 2k = Sy
Mpg = ~D(1-~v) 13; (; ae} + ( > 7 3p
. g BE (2.17)
op = —c2 2 gop 4 L 3o,
Qe ==l ax v 3r?
.18)
3F, D13 92F) 2
Q = O~ 5T 38
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where £y is the general solution of (2.7") and

fg — Red

(2.19)

According to the singularity analysis [2][3], stresses Oy
Tyyo

T
Iy> Txys
Txz s a8 well as My, My, Mxy s Qxs Qy should be of O(x~ %) This
demands that F

» £ should be of 0(r®/2) and W should be of O(r ). These are
the singularity conditions at the crack tip

THE EIGENFUNCTION EXPANSION OF STRESS FIELDS AT CRACK TIP

When p=0 let F{r, 6)‘“E}A+1F(B)
Substituting (3.1) into (2 10), we have:

(3.1)
F(r,08) = % £ i
F(r,8) = 5 r [K,cos(A~1)8+ Lx31n(k~1)8-+MAcOs(A+1)8 +
+ NA51n(A+1)S] (3.2)
From (2.8) and (2.11), we obtain
Wo=F -~ e si 5l
c V?F + E (aucosua 4+ B,,8inud) (3.3)

According to si

N ingularity conditions, in order to satisfy that W is of
O(Pa), Jet p=A-1

W = 5 g,

aern

(3.4)
k f:A<A 0s(A-1)8 + Lysin(A-1)6 + 4 2c0s(A+1)6 + N sin(A+1)0]
A-1
b5 D 9
i r Kukul MAK )LOS(A -1)6 + (B o1 E#XLA)SLU(A—l)G] (3.5)
Function £y is the general solution of Helmholtz's equation (2.7')
1t can be expressed in modified Bessel Function
£y = (C+D6)Io(zkr) + I{[A I)‘(ri\) + Avxlul\(zkr)] sinA6 +4[B, I, (2kr
( xis integer)
B ,I  (2kr)lcosae} + 1 {IALT, (2kr) + Al K (2kr)isinde +
{(} is integer)
+ fB’IA{zkr) + B K (2kr)lcosia} {3.6)
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where, C, D, AA’ A_x’ BA’ BWA, s»+ are arbitrary unknowns. Owing to the
soundary conditions, we should take D=0. From the condition of finit
rotations, we should drop out the modified Bessel functions of second kind
Keeping in mind that A will take positive zero as well as negative
tues, the function £, can be expressed in modif
irst kind only.

O (2ke).
A
Al

ied Bessel functions of
For symmetric case

k?mrk+2m
fA = SlnXBI (2kr) = glnkemjéii &EE?KTET (3.7)

1 for anti-symmetric case

o

2m A+2m
A . - kKo o
£y = cosA@Ix(zkr) = cosi® jzz s (x - (3.8)
m=0,1

here ¢(A,m) = (A+1)(A+2) <=« (X+m) (formz1), ¢(A,m)=1 (for m=0)
The linear combination of (3.7) (3.8) is also a solution of (2.7'), the

neral solution of (2.7') can be expressed as the following linear com~
Lination:

2 Z (A f ..t B
X n=0.1.20¢ A-1+2n “A-142n

~

£ c
A-1+2n ”A—1+2n) (3.9

Substituting (2.11) and (3.9) into (2.19) the expression of f is
sbtained as follows:

?m A—1+2(n+m)

Z Z {A sin(A-1¢2n)8 L
A=1+2n
n=0,1,

220 dee. T ¢(X 1+2n m)
=0,1

kaPX~1+2(n+m)
I e S T e

0 de s mid(A-1+2n,m)
b G

)
+ zﬂx‘ “[u\ L sin(A-1)0 —8 1cos(A-1)9] {3.10)
A*™ L ke
The boundary conditions are
B = £ = = I~
0 s Mg=M=Q =0
Substi ing (X

(d.any
ituting (3.2) and (3.10) into (3.11) a set of linear algebraic
itions is obtained for the unknown coeffic

ents of the expansions. Let

n 5
= n=0, 1, 2,% (3.12)

From the condition of finite strain energy, A should be positive.
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B e Yo 3 s § : . -
Fe relations between coefficients in &igenfunction expansion are as fol-
lows

1. If ) ig fractional, the coefficients of the particular solution are

= D
1 T T WK (3.13)

E})\_ALl are arbitrary unknowns. We divide By into two parts and let
the first paprt

Byt =

O

HAL, (3.14)

e

rrh 5 ¢ 5 . L - »
€ second part jis denoted by Bkwl’ of which only §i+2n are diffevent
from zero. :

For aA—l and the fipst part of Blwl’ we have:

5 el
Mg =g (3.15)
A = — __BDA(~k2)P
h-142n enld(An-2,n) 4 (3.16)
_D
Bre1 = WAL, (3.17)
B = _W{MM)(MH)“
e e RO (o) ey byt
b 2O (d-v) (-2 )
(n-1)T¢(A=1+n,n) BA+1] (3.18)
M o= BHO-1)(1-v) «
A (A‘H,)(l«\;‘} A (3.19)

For B%, the general solution of (2.7') is:

1,
k?mr§+2(n+m)

-
fo= 20 B costianye
= B T 3,7
n=0,1,+.. 2+20 2 m:%;‘;__”mi $(3+2n,m) (3.20)
P “j__ . (~k2)n -
420 T 2 RTetnTiinv)y B2 (3.21)

2. If XA is an integer, the coefficients of the particular solution
“x»1 are arbitrary unknowns. We divide a4 into two parts. Let the fipgt
part
o =2 LAK
@ 4 T K (3.22)
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The second part is denoted by &, _,» of which only &1+2n are differvent
from zero.

D
By-1 T § WAL (3.23)

For the first parts of akvl and BA 1° we have:

)

Moy 777 WK (3.21)

A -Df 4(A-1)(-k2)" K — 20+ (A-v) (k)T ]

A-1+2n T T a0 (n-2) Te0amnT) Ka (=D o0 -14n,m a1 ]

(3.25)

Yy o

By-1 70 MLy (3.26)
- 4DA(=k2)"

BA~1+2n - Cn!o(r+n~2,n) LA (3.27)

o BE(A=1)(1-v)
e T R Y (3.28)

For d,, the general solution of (2.7') ape:

2m_1+2(n+m)
5 k"
fo = — }: 11 sin(1+2n)6 z: T (3.29)
1
m=0,1+ 1+2n m:O,lﬂ--m'¢("+2n’m)
RETTI
1 = md Sl (3.30)

M+2n T [onr)T 4

In the above equations the basic unknowns ave KA’ & and AA+1 for sym-
“tric case and the basic unknowns are LA’ §% and BA+1’ for anti-symmetric
~ase. The others can be found by using corresponding recurrence relations.

Substituting (3.13)(3.30) into (3.2), (3.10), the expressions of F,

can be found. Substituting F, f into (?.13%«(2.18), we can obtain the

expressions of wP, we,w as well as Mr’ MT&’ MS’ Qr’ QG'
NUMERICAL EXAMPLES

Example 1. Finite size plate with uniform bending moment
The results in [9] are improved in this paper. The difference is that
i this paper we take more terms in the displacement expansions than in [9].
“e results show that the difference is 1-—2% only. The graphs and results
@ shown in Fig. 2 and Fig. 3 respectively.
Lxample 2. Finite Size plate with uniform twisting moment
In [10] and [11] the infinite plate with uniform twisting moment was
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studied. Up 1 th iuti © thi

led. Up to Now, the solution of this problem for finite plate is not
available.

The graphs and numerical results of calculation are shown in Fig.u

and Fig, 5 Fi t i g : i y

18- 5. In Fig, 5, the solution for a/L=0 is obtained by extrapolating
, o . .
method, which Tepresents the solution fop infinite plate and compares

favourably with that in [117.

¥z
/KQQﬁE? Kb
i &M
i Lew o2 }lgfza Ay=os
EENNEUR i T ANy ] y=e3
P 77 5 1 " 8 ¥
T 2 P, E::::::Ej::: i 20 - . T
i: :\N £ o1 > - S °
‘ S e e A 4
Ny 33 3 P 2 s Ref. [31 g % -2 O‘Réf'zt!e‘“‘
% , L inforte plote TS, . SR e
‘ 2345 8 L 5] Ko %
Fig.2 Fig.3 Fig. u Fig. 5
CONCLUSIONS

1. Thi

1S paper gives the general expansions of elastic stress-strain
fields at the o ! ip i
ST At the crack tip in modes 1 IT and 1II f ~ Rei
p i odes T I and III for ates of Reissne
N ‘ s I plates of Reissner type,
he expans z O T .
t “Pansions can serve as & basis for numerical methods for calculations
of SIF { : iy - N T
[F in plates, such ag boundary collocation, variational method, asympto-
tic method and bigher order finite element method.
9. T4 s . e .
It is pointed DUt in this paper that the governing equations given
- g ) ns gi
n [12] for pls Dressed ! ] . -
L12] for plates expressed in three generalized displacements are valid
[o) 2 = 3 oyl 3 .
1ly for uncracked plates. For cracked plates it is necessary to use Egs.
= o 5 . 5
(z./)w(z.io) Zilven in this paper.
3. For symmetric - F if i i
;Zv””,r_u case (mode I), if we include in our calculations the
terms of O(r ") in + > 3i £ ; ]
J in the expansions of P wy and W, the good results could
be obtained.
U, As . . .
As the ratio a/L lncreases, both stress intensity factors X and
. 1
K incre Y
117 ihCrease.
5. For Symmetric case (mode I), the size of the special element
should be +; - i i
taken 0.1—0.14 La’hjwin’ where [a,h]ﬂip is the minimum value
nir min

among > ilength a a thi & i
2 crack Semilength a and thickness h. ror anti-symmetric cases (modes

II and III}, it should be taken 0.o0u-0.06 fa,bh] . .
T “min
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