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ABSTRACT

In this bPaper the type of the basic equations of quasi-static plastic
fields is discussed fop both three dimensional problem and plane strain
problem, each case including perfectly plastic and Strain hardening materials
iherefore, the diseontinuity of the solution to the quasi-static plastic

problem ig revealed.
INTRODUCTION

The discontinuity in plastic-fields is an important problem. For
pPerfectly pPlastic, the plane strain problem was studied in detail by Gao
and Hwang‘j s Unfoptunately, the basic method and conclusions have not
been understood wall, and was criticized unjustly by [27. For the same

(3]

material, the general thres dimensional case was discussed by Gao » and
is publishaed in Chinese, thepefors not too many would know the conclusion.
Por the strain hardening material the type of the basic equations was
discussed by Gao and Hwang[“], but the interpretation is not in detail,
After thig work, Drugan and Rice discussed the Same essentiality of the
P?Cblemizjg and obtained the same conditions SYZ: SYY = S?Z =0, seeiq]
{1.14) ang [2](4.16).It is very strange that from the same‘conditiQns quite

different conclusions wape obtained. In this Paper all of the problem will

I. THREE DIMENSIONAL PROBLEM
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wxpression of matrix A can be found from[3]. It is well known the
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B, Flow factor, respectively. i, § = 1,2,3. We suppose % =const is
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lscontinuity-surface and let ¥,=E, according tof » then we can vewrite
basic equation as
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have the equivalent form:
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The last one of (1.9) means that axis %5 18 a principle axis of stress, so
! ' . . P
2y and %, are included in a principle plane. Furthermore, from the First
i P : , . . .
one of (1.9) we can know that %, and i? are just the directions of maximum
shear stress. Finally, we obtain the conclusion: if there exists a dis-

continuity surface, then it should include a principle axis, and the other
two principle axes should form 45° angles with the surface. Evidently,
these requirements can be satisfied if we choose a proper orientation for
the %, plane. On the other hand, we have not yet used the second one of
(1.9), and generally this additional condition cannot be satisfied. There-
fore, no characteristic surfaces exist. Then the basic equations are el-
liptic, the solution will be sufficiently smooth inside the plastic domain.
2+ Hardening Material
For the strain hardening material we can use the similar method as
in the previous section. We only need to cut ocut the vield condition and

take X as the following

A= peh{o)y & {4 10y

q o gi for plastic and loading

{ i ) (1.11)
0 for elastic or unloading
here
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and h(o) is a function lepending on the property of material. By similar

Srocedure as in the perfectly plastic

we can obtain a set of equa-
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cpression of matrix B is omitted here, and we have
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f1.9%) we can see the condition det §BY = 0 for hardening material

satisfied, in contrast to the case of perfectly plastic

for which the condition (1.6) could be satisfied. Only when the

tie deformation is omitted, (1.14%) can peduce to (1.8).Thevefore, the

ial is more difficult than perfectly plastic to have some
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ontinuities. It should be pointed out that the condition (1.14) had

tained by Gao and Hwang in[4], but the discussion is not in detail.

II. PLANE STRAIN CASE

ctly Plastic
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fer the plane strain case, let Xy =R, Xy E oy, then we have the stress

i $ 5o that
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fhe constitutive relation and the vestraint condition e = 0 we can
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For convenience,
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we introducs the maximim shear stress t
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Then using (2.2), the yield condition can be woi tTten as
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The ompatibility equation can be written as
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tituting (2.4, (2.2), (2.7) into the constitutive relations then into
2.8), we can obtain
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the crack-tip field (v< 1/2 case, ahead of crack-tip).
P k] ¥

@asy to verify that when 220 the basic asquations

1d discuss the case that =0, namely, vw< 1/2, then o_+o »crp =0
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required. This condition may be s But, simulta-

ond one of (2.12) should be satisfied at I. Generall
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mnot satisfy both conditions. Therefore, when v<1/2, the basic

should be itently smcoth in the

via domain.

it should be pointed out that the conclusion menticned above was given

1]

and Hwang before, and the jump conditions were discussed in detail
the case of v=1/2. There is nothing wrong in[171. {21, it is expected

= 0 can be satisfied in some whole ve gion. In fact, it can

tisfied on some curves.,

fhe practical important case is that ]«‘5 PO ~g | << ‘rf +0 ;
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case, if

¢ is neglected, then the basic equations can be considered as hyper-
P

inted out

feos but only in the limiting me zaning. It should alsc be
red

X {5] .
= r;';;.~gv~0D9<?O case was conside: and used by Gao- already.

2. Hardening Material

for hardening material plane strain cage, the type of the basic equa-
r RS
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discussed by Gao and Hwang . From eg.(2.1

9
ted, and v=1/2, and

only when the elastic deformation is

5, then some discontinui

III. CONCLUSION

mesnional prob vfectly plastic and harden-~

solution

discontin~
can only appear

plane strain problem for perf

@ hyperbolic only when v=1/2. Otherwise it is ellip

erial, the bas equations
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