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ABSTRACT
This paper presents a brief summary of the recent and curvent work of

the authors in the following selective areas: (I} dynamic fracture mechan-

and {II) three-dimensional crack problems. Im Part I, the following
copics are addressed: (1) a moving singular element procedure which gives
iighly accurate solutions to elastodynanic problems of fast crack propaga~
cion in finite bodies, (2) numerical simulation of dynamic crack propaga-
tion and arrest in various fracture specimens using the above analysis
procedure, and (3) path-indspendent integrals that characterize the severe
ity of the tip of an elastodynamically propagating crack., Ia Part IT, we
present: (1) the general analytical solution for an embedded elliptical

crack in an infinite solid which is subjected to arbitrary tractions on

crack surface and (2) an improved finite element alternating method
vor analyses of surface-flawed three-dimensional structures, which employs

above solution, and its application to various problems,
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I. DYNAMIC FRACTURE MECHANICS

1. Moving Singular Element Procedure

First, we consider a crack propagating with an instantanecus crack

velocity C(t) in a linear elastic solid. Nilsson {1] has shown that, in

the vicinity of the crack tip, both the differential equations and the

boundary conditions for an arbitrary moving crack coincide with those for

the problem of steady state crack pPropagation with the constant crack ve-

locity C. The general solutions (eigen solutions) for the stress and dig—

placement of the near-tip field under an unsteady as well as a steady con-

dition were obtained in {2] in a vnified fashion for all the three frac-

ture modes:
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(1) and (2) contain the zero stress and rigid body motion {n = 0},
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the singular stresses and corresponding displacements {n = 1}, the con-

stant stresses and linear displacements {(n = 2), and the higher order
- e e N P o *
texms (n » 3}, Thus, the parameters Koy Kl, Ki are equivalent to the

dynamic stress intengity F cors K i
5 c 85 intensity factors hI’ KII’ and KIII’ tespectively,

In Refs, {3,4], a "moving singular element” procedure for the dynam-
¢ analysis of fage crack propagation in finite bodies was presented, In
this Procedure, the eigen~functions for displacement given by g (2)

g 3 - (2

are used as bagig functions of the

ement which survounds the crack~tip,
The singular element nay move by an arbitrary amount of crack length in-
crement Aa in each time increment At of the numerical time~integration
procedurs.  The Roving gingular element, within which the crack-tip al-
ways has a fixed location, retains its shape at all times; but the mesh
of regular {iaeparametrim) finite elements, surrounding the moving singu-
lar element, deformg accordingiy.

To simulate large amounts of crack

propagation, the mesh pattern of the regulac elements is readjusted peri-

odically,

T - difiama - FENE s 3 4
The conditions of compatibility of displacement, velocity, and accel-

eration between the moving singulay element and the surrounding regular
alements are satisfied through a least squares techanique [3]. aAp energy-~
consistent variationaj statement wag also developed in {3}, as a basis for
the above method of fast fracture analysis. It has been demonstrated [4]
that the above Procadure leads to a direct evaluation of the dynamic
stress intensity factors in as much as they are unknown Parameters in the
agssumed basis functions for the moving singular element.

The above analysis procedureg were verified through application to
the problems for which analytical solutions for infinite domain cases are
available, gsuch as:

(i)

@

elf-similar, tonstant~velocity Propagation from a finite initial

4

length of a central crack in a square plate subject to a wniform
time~independent, tensile stresses normal to crack axis, at the
edges (analogous to the problems of Broberg [5] and Rose [61);
(ii) a stationary central crack in a rectangular plate subject to im-
pact temsile stresses {a Heavigide step-function) at the edges
(analogous to the problems of Baker [7] and Sih et al {&]);
{(1ii} a problem similar to (ii), except that, at time to’ the crack
starts propagating symmetrically with a constant speed {analogous
to the problem studied by Freund [9]);
{iv) constant-velocity propagation of an edge crack in a finite width
strip subject to prescribed displacements at the edges {analogous
to the problem of Nilsson [10}).
The results obtained by the moving singular element procadure were com-
pared with these analytical solutions. The numerical results [4] have
been found to correlare well with the analytical solutions for COrTespon—
ding problems in infinite domains, during the time for which these ana-
iytical solutions way be considered as valid., The computed solutions be-
voud these times, and knowledge of the times involved for wave~interaction
in finite bodies, indicate both qualitatively and quantitatively the ef-
tects of stress-wave interactions on dynamic stress intensity factors for
cracks propagating in finite bodies. For the problems (1) to account for
the effect of the finite domain on the dynamic stress intensity factors,
@it Approximate solution was developed in {4,11]. Good correlations be-
tween the numerical solutions and the approximate solutions were also
asoted in {4,111,
To simplify the procedures in {31, a study was undertaken in {12,13]
to address: (i) the effect of using only the stationary crack eigen

functions in the moving singular element for dvnamic crack propagation
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and {11} the use of isoparametric slements with mid-side nodes shifted to

¥

the "quarter-point” so as to yield the appropriate (r ?) singularity. It
was found that even rhese simplified procedures vield acceptable accura-
cies for engineering purposes.

2. Humerical Simulation of Dynamic Crack Propagation and Arrest

Numerical simulation of dynamic fracture can be classified in two
catagories [141: (i) "Generation" phase simulation and (ii) "Prediction®
or "Application" or "Fropagation"” phase simulation. In the generation
study, dynamic stress intensity variation with time is determined for a
specified crack~propagation history. Thus, all the examples presented
earlier and the cited analytical solutions fall into this category. on
the other hand, in the prediction study, crack-propagation history is de-
termined for a spacified dynamic fracture toughness versus crack-velocity
relationship.,

Using the moving singular element procedure, extensive work hag been
conducted in 15,16} concerning both the generation and the prediction
studies for wedge-loaded, rectangular double cantilever beam {RDCR) spec~
imens of a transparent epoxy resin, Araldite B, These results were found
to be in excellent accord with the sxperimental results reported in [17].

it was also found [16] that the position of loading point in rhe finite

>lement mesh has a iarge influence on the input energy into the specimens.

o

Thus, the simplified loading conditions such ag loadings at the edges or
crack surfaces, which are often employad in numerical analyses, may re-
sult in erronecus simulations.

These studies were later extended in {18] to study fast fracture in
non-transparent ROCB specimens made of structural steel. In the experi-

ments [19] on steel, the stress intensity factors were measured by caug—

The measured

tics reflected from the mirrored surface of the specimen.

fo))

gs intensity factors in the steel specimen [19] show large oscilla-

ms during some stage of crack-propagation, whereas the data for Aral-

Jdite B [17] is rather smooth. The authors of {19] attribute this oscil-

tation to high frequency stress waves interacting with the crack., How~
over, it was considered [18] that this oscillation may be limited te the
urface of the specimen due to the 3-dimensional nature of the wvibration
wf the specimen surface and that the stress intensity factor along the
crack front inside of the specimen thickness may be expected to show a
rather smooth variation. The results in Ref., {18} in fact tend to con-
firm this view.

Among the conclusions of the study in [18] are: (i) the dynamic
crack propagation and arrest are influenced largely by the mass density,

moderately by Young's modulus, and almost negligibly by Poisson's ratio;

) the variation of dynamic stress intensity factors is influenced by

Lixe

@ various waves originally generated from the fast crack initiation and

then reflected from the boundary of the specimen; (iii) the ratio of the

1)

cimum kinetic enmergy to the input znergy increases with the decreasing

leigh wave velocity for different material properties; (iv) the crack

wwrest toughness, for a given crack propagation history, increases with

the increasing ratio of maximum kinetic energy to the input energy or

the decreasing Rayleigh wave velocityy and (v} analysis with a real-

istic wedge loading cendition {contact/no~contact) gives a slightly lower

# condition (specimen al~

=3

tion of s. 1. f. than with the fixed loadir

ays in contact with the wedge).
For dynamic tear test (DIT) specimen, the conclusions of {201 con~
criing load-rate sensitivity of dynamic fracture toughness for a propa-

critically examined in {21}, Humerical simulation of

histories in four cases of dynamic tear experiments,




under impace loading on 4340 steel specimens, were performed [21]. ‘The
influence of the loss of contact of the specimen at various times with
either the SUpports or the tip or both was also critically examined. In
zach case, the variation of the dynamic stress intemsity factor for the
simulated crack Propagation history was directly computed using the moving
singular element Procedure. The results in [21] appear to indicate that
the conclusions in [20] may not be fully warranted.

Based on the numerical results in {211, a method was proposed in [22]
for determining the dynamic g, 1. f. directly from crack-mouth opening
displacementsg in DIT specimens, Thig simple method {221 should be of
value in the experimental Beasurement of dynamic g, i. £. for propagating

acks in {opaque) metallic specimens, rather than inferring the s. 1. f.
from causticg reflected from the mirrored surfaces of the specimen.
3. Path Independent Integrals
Now we consider a crack propagating at an angle 6 measured from the

Xl axis. The ERergy release rate @ can be written ag [23]:

G e (Ck/C}Gk = Glcassc + Gqsinec :

G}, = .Ll'n f {W+ Tn, - t L 1ds {3
S o F k 1 4ok
g“ <3

where Qk denotes the component of crack velocity in the Xk direction; W

and T are the strain and kinetic energy densities, respectively: the

o
k>

cutward norma] direction cosines; tj, the traction; and ( ) K denotes

3¢ )/&xk.

The path independent integral which ig equivalent to the components

of the Snergy release rate was derived in [2]:

T, o a
Jr iig j;g[(w + T)nk tiui,k}ds

- 1$;j‘+r [+ Dmy ~ eu | as

+ Jg_vslpuiui’k - puiui’kjdv‘ {4)

‘he above path independent integral is valid under general mixed-mode

conditions for a crack propagating with non-constant velocity under up-

teady-state conditions. Under a steady-state condition, it was shown

{24} that the Ji integral can be reduced to the expression obtained by

{25], which is valid for only steady-state crack Propagation at con-

‘tant velocity., The existence of many path independent integrals, which

do not have the meaning of energy release rate, was discussed in {267.

The other two types of path independent integrals derived in {23,273
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Using the asymptotic solutions [2] given by Eqs. (1) and (2), the
relations between the path independent integrals and the instantaneous

stress intensity factors can be expressed as [2]; for Gp = 0:

10 =00 = i% ;KzzAIm * KIIZAII{C) * Km‘.zzAzxzm): ;

Jéo - Gzo . KlizlAIv(C) (7)
}10 = "7% 3[(12?1(“') * anﬁu(@ * Kuxzﬁm(c)s ;

3, = - figﬂfvlv(cy (8
‘110 = ﬁ%;KIZFI{C) ¥ KHEFHW) * K’IIIZFIII(C)E ;
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The detailed expressions for the crack speed functions are given in [2].
For 8 = 0, the components of the path independent integrals can be re-
&

lated to those for € = 0. For example, the compounents of the energy
A

release rate arve [28,291}:

3 e
G, = G, Tcos8 -~
& :

v B o .
1 i = G binaa + GZ CObSC (10)

1

Substituting Eq. (10) into Eg. (3), we obtain G = G}O for any GC. The

G = Glﬂ relation can be also obtained directly from Eq. (3) for HQ = 0,
Thus, the above fact confirms that the energy release rate ¢ is invari-
ant while the components Gk depend on the coordinate system.

A numerical study [26] using the moving singular element procedure
indicates that the path independent integrals given by Egs. (4), (5), (&)

give distincily different numerical results, as expected from the theo-

10

retical peint of view [2]. Although the moving singular element procedure
zives highly accurate solutions, especially for detailed stress distribu~
tion near the propagating crack tip, this procedure may be difficult to be
applied by general users of finite element method because of its sophisti-
cation. From this point of view, a study [28] was undertaken to use the
path independent integrals with a less sophisticated finite element model
such as the isoparametric elements. The combined use of the J' integral
and the moving isoparametric element procedure was shown [28] to be an
zffective tool for the evaluation of the crack-tip parameters such as the
stress intensity factors as well as energy release rate. It was also

found [28] that the use of J and J integrals in the finite element model,

in which the singularity in the kinetic energy density is not incorpora-
rod, led to false values of stress intensity factors.

For mixed-mode crack propagation, a procedure was presented in {29}
for determining the mixed-mode stress intensity factors from the Jé inte-
iral. Practicality of this procedure was shown in the numerical examnples
£ {29). The following relations for the components of the path indepen~

dent integrals were also found in [29]: |
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¢ a stationary crack (C = 0), these relations can be reduced to QG 0} b-3

;s etc.




II. THREE~DIMENSIONAL CRACK PROBLEMS
1. General Analytical Solution for an Embedded
Elliptical Crack in an Infinite Solid

In the alternating method [30], the analytical solution for an em—
bedded elliptical crack in an infinite elastic medium, which is a basic
solution required in the alternating technique, has been limited ro a
cubic variation of normal pressure on the crack surface {31]. This limi-
tation is thought to be one of the major reasons for the relative inac-
curacy of the alternating method as compared to hybrid finite element
procedures or the boundary~integral equation procedures.

Recently a general solution procedure has been derived in [32] for
the problem of an infinite elastic medium with an embedded elliptical
crack, the faces of which are subject to arbitrary variations of normal
as well as shear tractions. Later a more detailed solution, as well as a
general procedure for the evaluation of the required elliptic integrals,
was obtained in {331,

Since 1971 no work has appeared in literature to generalize the so-
lution in {31] to an arbitrary pressure variation on the crack surface
due to the seemingly insurmountable mathematical and algebraic difficult-
ies. While the analytical solution [32,33] can be reduced to a closed-
form solution for a relatively simple loading such as censtant or linear
variation of the tractions, for a high order polynomial variation of the
tractions, the solution procedure requires a digital computer. To obtain
the stress components at a given point by using a computer, a general
evaluation procedure [33] for obtaining the partial derivatives of the
potential functions used in the formulation is also one of the key alge~

braic steps in the successful application of the present analytical solu-

tion,

2. Finite Element Alternating Method

Recently a major improvement of the alternating method has been made
in 33,341, In the new alternating method [33,34], the complete, general
walytical solution £32,33] for an elliptical crack explained earlier was
implemented in conjunction with the finite element method.

The major steps required in the finite element alternating method are

in the following: (i) Solve the uncracked body under the given ex~
ternal load by using the finite element method., To save computation time
‘e solving the finite element equation for multiple right hand sides, a

pecial solution technique was implemented [331; (i1) Using the finite

wloment solution, compute the residual stresses at the location of the

iginal crack in the uncracked solid; (iii) Compare the residual stresses
alculated in step (ii) with a permissible siress magnitude; (iv) To gat~

tsfy the stress boundary condition on the crack surface, reverse the re-

sidual stresses. Then determine the analytical solution for the crack

iected to these reversed residual stresses; (v) Evaluate the stresg
intensity factors in the analytical solution for the current iteration;
vi}) calculate the resideal stresses on external surfaces of the body due

the applied stresses on the crack surface in step {iv}). To satisfy

stress boundary condition on the external surfaces of the body, re~

crse the residual stresses and calculate the equivalent nodal forces;

«l (vii) Consider these nodal forcas as external applied loads acting
the uncracked body. Repeat all steps in the iteration procedure until
residual stresses on the crack surface become negligible {step iii).
sbtain the final solution, add the stress intensity factors of all

svations.,

in the above, several novel computational techniques were also imple-

snted o save the computation time and to improve the convergency and

13




accuracy of the present finite element alternating method [33,34,35,26].
Since a very coarse mesh can be used to analyse the uncracked body, the
alternating method becomes a very inexpensive procadure for routine evalu~
ation of accurate stress intensity factors for flaws in structures. It
was found [33] that this new alternating method is at least an order of
magnitude inexpensive compared to the earlier hybrid-element procedure
{371.

The present alternating method has so far been applied to solve the
following problems: (i) embedded elliptical cracks in finite bar and
plate [33], (ii) the benchmark problems, semi-elliptical surface cracks in
finite-thickness plates [33], (i1i) outer and inner semi-elliptical sur-
face cracks in pressure vessels {351, (iv) a quarter-elliptical corner
crack in a brick [36], (v) quarter—-elliptical corner cracks emanating a
hole in finite~thickness plate [36], and (vi) quarter-elliptical corner
cracks emanating from a pin hole in aircraft attachment lugs [36].

Several studies are now underway to use the altermating method for
multiple semi-ellipticai cracks in pressure vessels and for thermal shock

analysis of surface flaws in pressure vessels.
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