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Abstract The paper presents numerical methods used for predictiwd paths in technical structures based
on the theory of linear elastic fracture mechanics. To sateutrack growth, the FE-method is used in combina-
tion with a smart re-meshing algorithm. Different methodsviding accurate crack loading parameters partic-
ularly for curved cracks such as the J-integral or stregmsity factors (SIF) are presented. Path-independent
contour integrals [12] are used to avoid special requirgsmeoncerning crack tip meshing and to enable effi-
cient calculations for domains including interfaces andrimal boundaries. The integration paths being finite
and far from the crack tip, special attention has to be de#ettd the treatment of the crack face integral since
the calculation of the coordinafie is challenging [5]. The same holds for the coordirmﬂééof the interaction
integral related to a mode-II auxiliary loading. In partem the interaction of multiple cracks and internal
boundaries and interfaces is investigated. Calculatiegytbbal J-integral, including all crack tips existing in
a structure, leads to the necessity of a separation proeedutetermine the parts of J related to each single
crack tip.
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1. Introduction

Path-independent integrals are widely applied to caledtzading quantities such as stress intensity
factors, the energy release rate or the J-integral. Théeg+al is based on Eshelby’s [6] general
theory of forces acting at singularities. Rice [12] and @panov [4] applied the formulation of this
path-independent integral to strain concentration probléke notches and cracks. Herrmann and
Herrmann [10] extended Rices’ approachJofwhich was limited to straight cracks, by a formula-
tion of the two-dimensionalk-integral vector which is composed of the coordindte= J and J,.
Bergez [2] presented a relation betwekfintegral and SIF. It is well-known that the calculation of
the Jo-integral is challenging since the numerical treatmenhefdingular stresses at the crack tip is
going along with problems finally leading to inaccurate tessuA semi-analytical approach for the
calculation ofJ, considering straight cracks was presented by Eischen [5].

The M-integral is a conservation integral based on the ggs#tion of two loading scenarios [13, 14],
i.e. the actual and an auxiliary loading. In general, the tipasolution is employed to obtain auxil-
iary fields limiting this method to straight cracks in homogeus materials without interfaces. Gosz
et. al. [7, 8] applied the M-integral to three-dimensionaak problems considering interfaces and
curved crack fronts, however still maintaining straiglaai faces.

This paper presents two new methods for calculating acewedties ofl, which are valid for straight
and curved cracks. Further, tMg-interaction integral vector is calculated for arbitranyeed crack
faces.

Crack path predictions for multiple crack systems are edrout classically by applying crack tip ele-
ments [3] or the M-integral associated with small integnattontours [16]. Additionally, a separation
procedure is introduced, to calculate accurate loadingtifiess from a globaly-integral calculation,

representing the sum of a]lf)-integral vectors, related to the i-th crack tip. Resultingck paths of
a crack propagation simulation considering two cracks ezsented.
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2. Path-independent contour integrals

(a) (b)

Figure 1. Integration contours, actual and fictitious criadesl ¢ andl ¢ for path-independerd and
My-integrals.

Within the theory of Linear Elastic Fracture Mechanics (MDRthe Jy-integral vector is a path-
independent energy conservation integral. With an integraontourl ¢ in the vicinity of the crack
tip at a distance, theJ-integral is defined as

= lim /ijnjds (1)
e—0

with Eshelby’s tensoQy;, including the stress tensorm, the strain tensagm, and the displacement
derivativesy; y:

1
Qxj = éamnemndq — GijUik (2)

The Kronecker identity tensor is denoted@s. In LEFM the coordinates of Eq. (1) are related
directly to the stress intensity factors [2]:

_ K|2+K|2| J2:—2KI Kii
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For plain stres&’ = E and for plain straifE’ = E/(1— v2). The energy release ra@is the projec-
tion of J, onto the unit vector of crack propagation directign

G = k% (4)

If the J-integral is calculated, assuming two different superisgzbloading scenaridd and@ for
an arbitrary crack configuration, one obtains the follonexgression:

(D)+2) _ (V+2) . ds = i D) 0@ L o2 Ynds= 3V 1 3@, 51/2)
I _llino/Q"i ans_yLno/ (ij + Q" +Q; )n,ds_Jk +d7 + (5)
Fe Fe
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The third term of Eq. (5) is the interaction integral vec]ﬁl/z) and will be denoted from now on as
Mg,
1/2)

Mk_llm/Q n;ds (6)

with Eshelby’s tensor related to the interaction integral

a2 1 2 2) (1
Q 2= 2( e +ar(nn)er(nn) &j — ( ,(J) ,(k) +0i(j )ui{k)) (7)
For straight crack faces, the near-tip solution yieldsd/édildsemn, omn, U; k associated to an auxiliary
loading configuration and is therefore usually applied asliawy field. The relation between the
coordinates of Eq. (6) and stress intensity factors is dsvist
K K K K
| | I Il 1] 1l I
M]_:ZE, M2:_2§7 Ml :ZE, M ——ZE (8)
The superscripts | and Il denote a single mode-I or singleeribduxiliary loading. If finite integra-
tion contourd R are considered, the coordinateslpandMy in general become path-dependent. If
crack faces are straight, see Fig. 1(a), the path-depeadgmestricted ta, and M'Z' in the case of
mixed-mode loading. If curved crack faces are considerssl, sin Fig. 1(b), both coordinates d
andMy are depending on the chosen integration conkgurTo hold path-independence, crack face
integrals with @c = dI'{ = —d'< have to be introduced, describing the jump of Eshelby’sdens
across the crack faces:

Jk:/ijnde-l-/ [{ijﬂfnjds (9a)
MR F'c

M_/Ql/znds+/ Ql/2 “njds (9b)

In contrast to thely-integral according to Eq. (9a), thég-integral according to Eq. (9b) is still
not path-independent, if curved crack faces are considePadh-independence is finally achieved
including an integration along the fictitious crack surfadeg = dr't = —dr -, see Fig. 1(b):

My _/Ql/znder/ Ql/2 n,ds+/ Ql/2 n,ds (20)

These are corresponding to the auxiliary fields which arertdkom the asymptotic crack tip solu-
tions. Thus, the fictitious crack facés and the actual ond: always coincide at the crack tip. The
integration in the vicinity of the crack tip based on numafi@alues provided from the FE-calculation
is challenging. As the numerical representation of the ety in stresses and strains deviates
strongly from analytic solutions, the calculation of crdake integrals needs a special treatment.

3. Extended crack face integration

In this section, two methods are presented producing setffigi accurate results for the crack face
integration. Both are applied to thlg- and M- integral calculation, however only the first one is
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X2

Figure 2. Curved crack facds", [, crack tip coordinate system, global coordinate syste,
local crack face coordinate systethdepending on the position, arc lengthalong the
crack faces with its origin at the crack tip, regidnwhere numerically calculated values for
crack face integrals deviate strongly from the analyticsone

presented here.

When calculatinglk by integrating along a circular contolig with the radiusR and considering
curved cracks as shown in Fig. 1(b), the crack face integradia to be taken into account. Is the crack
face integral calculated conventionally, this leads tomssaterable error in the second coordindte
and therefore in the SIF calculated frapwith Eqgs. (3):

E/ 2 E/ 2
K=+ 2J1 14+4/1— (%) , Ky—+ |E |14 /1- (%) (11)
1

3.1. Method 1: Analytic extension method

In the vicinity of the crack tip, the integrand can be formethanalytically. Therefore, the crack
face integral of Eq. (9a) is divided into one part calculatedherically and the other part calculated
analytically:

) 0
Jk:/ijnde—l—/[[ijﬂtnjds-l—/[{ijﬂinde 12)
MR R 13

The parameted separates both parts, see Fig. 2. The crack is assumed taiggsin the vicinity of
the crack tip, as the curvature can be neglected for sondbr such a crack, the dominant terms are

the first terms of the series expansi@]}fﬁ) andui(”) found by Williams [15], representing an infinite

sum of eigenfunctions, completely describing the stregstigplacement fields in a cracked body

O-I(]n) (r7 ¢) = ergl |:an Ml(Jn) (¢) + bn NI(Jn) (¢)] (13a)
(n) 12 (n) )
U (r, 9) ﬁnglrz [an F'7 (¢)+bnG; ((IJ)} (13b)
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with a, andby, being constant coefficients aM;(j”) (9), Ni(j”) (9), F™ (¢) andG" (¢) trigonometric
angular functions. The coefficiendag andb; of the first eigenfunction are related to the ¥fFand
Kyi and the coefficiend, of the second eigenfunction is related to the T-stiiggs

K —iK; = v 27T(a1+ib1), Ty =4ay 14

Substituting Egs. (13) into Eq. (2), calculating the jumEshelby’s tensor across the crack faces
according to the third term on the right hand side of Eq. (1) eonsidering Eq. (14), the analytical
part of the crack face integral is obtained:

0

sana_ / [[ijyds:s% (15)
1)

Asnj = (0,£1) all along the crack faces, the integral of Eq. (15) contelsubJ, only. The remaining
two terms of Eq. (12) are calculated numerically, excludimg small regiord at the crack tip from
the integration, now reading]"™ [11]. An iterative procedure is necessary to calculate tizyaical
partJ5"d see Fig. 3.
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Figure 3. Flow chart of the iterative scheme for the calcotadf the analytical part of thé-integral.

The constant T-stress on the crack faces is therefore detdrat the positiom = & from the series
expansion Eq. (13a):

Ti= 2 (051(8, +70) + 0F1 (5, —1) (16)

2

The stresses on the positive and negative crack @agg®, ) are extracted from the FE calculation
and substituted into Eq (16). As a first approd€inis calculated by substituting™ andJ;4™ = J9
into Eq. (11).J8"is calculated by substitutin@, Ky andd into Eq. (15). The valud)*! of the
present step is the sum &Y™ andJ3" If the absolute difference betweéhi™ of the present and
J7 of the previous step is below a critical value, the iterafivecedure is stopped and the final value
ist = Jg“. If the stop criterion is not fulfilledK;, of the next step is now calculated by substituting
JMUM andJ5*t into Eq. (11) and so on.

3.2. Method 2: Extrapolation method

The research revealed, that the incorrect calculatial &f an outcome of non-symmetric numerical
errors within the regio® at the crack tip, which are related to a mixed-mode loadingigaration
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[11]. A mixed-mode loading is a superposition of a single exddnd single mode-II loading. Thus,
the values of stresses and strains are split into partecelatmode-1 and mode-I1l loading as follows.
The stresses and displacement gradients related to the etyimmrack tip opening are calculated
according to:

[ —

011 (46) = 3 (0F1 (X +70 + 031 (e~ 1) (172)
U (00) = 5 (U8 3 (ke 470+ 8 3 (e, 70) (arb)

The stress and displacement gradient related to the amitneeack tip opening are determined by
subtracting the symmetric parts from the total values, i.e.

011 (¥, £71) = OF1 (¥, £7) — 013 (Xc) (18a)

UY 1 (Xe, £71) = U3 5 (Xe, 71) — Uy 5 (Xc) (18b)

As the mode-I stresses and strains according to Eqgs. (1iieamon-singular behavior on the crack
faces, extrapolating{l andu'Ll towards the crack tip is feasible. From Fig. 4(a) is beconesons,

that particularlyo], exhibits large numerical errors and thus an extrapolageasonable [11]. The
mode-| values withiri0, ] are replaced by those, calculated from a linear regres®earranging
Egs. (18), the mode-l and mode-Il stresses and strains esentened and the crack face integral is
calculated as usual following Eq. (9a), considering the walues. Substituting the resulting values
Jk into Eq. (11), this provides accurate SIF for curved craaksden mixed-mode conditions.
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Figure 4. (a) Decomposed mode-I and mode-II stress disiitisio] ; andal';, original and extrapo-
lated. (b) Numerically calculatedt-integral, crack face integral calculated within the range
[0, Xc], comparison of different methods.

In Fig. 4(a) the tangential stresg,; on the crack faces is plotted vs. a normalized crack facedéoor
natex; = (R—xc) /R, with X; = 1 at the crack tip ang. = 0 for x. = R. The considered boundary value
problem is that one of a Double Cantilever Bream with diskinforcesF; = 100N andr, = 99N
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Figure 5. FE-mesh of the grown curved crack shown in a defdrooafiguration.

acting at the front end leading to a curved crack path, see FigThe corresponding-integral
calculated within the rang@, %] is shown in Fig. 4(b). The functiody (X;) has got nothing to do
with path-dependence but enables to localize the incocettibution to the crack face integral. The
value thatJ, reaches approaching the crack xip= 1 is the relevant loading quantity according to
Egs. (12) and (1). For the sake of comparison, results fraerCitack Tip Element (CTE) method
[9, 1] have been included in the figure.

The choice of the parametérhas an influence on the results. ok &, not all inaccurate values are
excluded from the numerical integration and therefore #seilting values ofy are inaccurate. For
0 > &, the values odi obtained by the extrapolation method (Method 2) show litiflience. On the
other hand, the values df calculated by the analytic extension method (Method 1) sinoveasing
deviation for increasin@. The research revealed that the best choic® afcludes the region of the
first three element rings around the crack tip. Both methoelsaitable for the accurate calculation
of the coordinaté/)) as well.

Table 1. Comparison of stress intensity factors calcul&tmd the CTE-method and thd-integral
considering the actual crack face integral (ACFI) and théificis crack face integral (FCFI),
neglecting FCFI only or neglecting both FCFI and ACFI.

CTE My My without FCFI My without FCFI and ACFI
Ki/(MPa,/mm) 240.39 240.31 276.77 261.72
Ki/(MPay/mm) -2.86 -2.95 -38.38 7.26

Results of SIF calculated from the CTE-method [9, 1] andMijentegral are presented in Tab. 1. Itis
obvious, that neglecting the integration along the fiatisicrack faces of the auxiliary fields produces
considerable errors. The same holds, when neglecting hetfidtitious crack face integral (FCFI)
and the actual crack face integral (ACFI), as shown in thieckelsimn of Tab. 1.

4. Systems of multiple interacting cracks

The loading quantities of multiple crack systems, relate@\tery single crack tip, are calculated
by path independent integrals. With regard to crack tipg@gghing interfaces such as material
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interfaces, internal boundaries or crack surfaces, it iefieial to evaluate the integrals along large
contours containing alN tips of a multiple crack system, see Fig. 6(a). For comparitite crack
paths are simulated by calculating the integral along somaitours in the vicinity of the crack tip, as
shown in Fig. 6(b). The resulting value of thgintegral along a large contolip equals the sum of

ttrtttttttttttm N
Mo
3@ /9]
‘(}_t\ - J(Z‘)\@l
NY ! kN
S S —_o® @: ______ oM 2
-?)¢ J<1)}¢
k k
) X2
T_.)?l T_.)zl

@) (b)

Figure 6. Integration contoufs), Iy, ', for path-independer andM-integral andk-integral vec-

torsJ.".

the loading quantities of all crack tips.

N .

J= .ZlcosdJ(i) ’J&”’ (192)
N .

3= _;sintp(i) ’Jlﬁ')] (19b)

The angleg () is related to the global coordinate system The applied crack deflection criterion
is that of themaximum energy release rate, i.e. theJg-vector points into the direction of the crack
propagatiorg, see Eq. (4). This and the principle of minimum potentialrgpdead to the auxiliary

condition, that the sum of the absolute values of Jpentegrals related to every single crack tip,

reaches a global maximum. Further, each absolute vé'lhenust be smaller or equal to the value
of the critical energy release ra®. If another condition is required, in order to reduce theisoh
space it can be postulated that the crack deflection anglé meusmaller or equal to a maximum
value dpmax. The latter criterion is motivated by the fact that cracksally show a smooth curvature
whereas sharp kinks are only observed if the loading regsreabjected to a sudden and fundamental
change.

N,
Zl ‘J&')’ < max (20a)
i=
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‘JS)) < Ge (20b)

d¢ < d¢max (20c)

Developing a separation procedure to deterrﬂﬁ"iebased on Egs. (19), this method has to satisfy the
conditions according to Egs. (20). A numerical validatisrachieved by calculating thiR-integral
along small contours around the crack tip, see Fig. 6(b). |ddeing quantities calculated by small
contourd’; must be equal to the values that are calculated by the sepaprbcedure. Here it must
be taken into account that numerical errors dominaftg,ig chosen too small, whereas large contours
must not intersect other crack faces or boundaries. In Kl.résults of a simulation with two cracks
are presented. The plate specimen is exposed to a unifodhiPjeca 100MPa and exhibits two non-
symmetric incipient cracks of the lengdh = a, = 5mm. All geometric dimensions are shown in Fig.
7(a). A crack growth simulation with fatigue crack growttemassumed to be constant and equal for
both cracks, leads to the crack paths as shown in Fig. 7(b).
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Figure 7. (a) Geometric dimensions of plate specimen etthgiwo non-symmetric incipient cracks.
(b) Crack paths resulting from a crack growth simulationasipg the specimen to a uni-

form loadPy = 100MPa.

5. Closure

Introducing path-independent integrdlsand My, the necessity of the calculation of crack face in-
tegrals is outlined. Considering interfaces, internalrmtaries or crack surfaces, it is beneficial to
apply large contours including crack face integrals fordhkulation ofJ; or My. To achieve path-

independence for thil-integral considering curved crack faces, an integrationgthe fictitious

crack faces of the corresponding auxiliary fields is nesyed&hen calculating the stress intensity
factors or the energy release rate from path independesgrads, it is inevitable to calculate these
integrals accurately. The challenging calculation of treek face integrals is explained and two new
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methods to calculate accurate values are presented. Aytiaabextension method and the extrap-
olation of singular stresses and strains on the crack famesde very good results for straight and
curved cracks.

TheJg-integral is applied to multiple crack systems, calculgtiglobal value ody, being the sum of
all local values related to every single crack tip. Auxyiaonditions are introduced to solve a global
minimization problem. A separation procedure enables limuite loading quantities related to each
crack tip. Based on the specimen in Fig. 7, experiments aretab be carried out, in order to verify
the theoretically predicted crack patterns.
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