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Abstract  Pressurized graphene bubbles have been observed in experiments, which can be used to 
determine the mechanical and adhesive properties of graphene. A nonlinear plate theory is adapted to 
describe the deformation of a graphene monolayer subject to lateral loads, where the bending moduli of 
monolayer graphene are independent of the in-plane Young’s modulus and Poisson’s ratio. A numerical 
method is developed to solve the nonlinear equations for circular graphene bubbles, and the results are 
compared to approximate solutions by analytical methods based on membrane and linear plate theories. The 
adhesion energy of mechanically exfoliated graphene on silicon oxide is extracted from two reported data 
sets. The strain distribution of the graphene bubbles and transport of gas molecules among the bubbles are 
discussed. Moreover, the effect of van der Waals interactions between graphene and its underlying substrate 
is analyzed, including large-scale interaction for nanoscale graphene bubbles subject to relatively low 
pressures. 
 
Keywords  Graphene, Adhesion, van der Waals interactions 
 

1. Introduction 
 
Graphene bubbles have been observed in experiments. Stolyarova et al. [1] observed nanoscale 
bubbles when mechanically exfoliated graphene flakes were placed on top of a silicon substrate 
covered with a thermally grown silicon oxide layer and exposed to proton irradiation. Much larger 
graphene bubbles were observed when the graphene flakes were exposed to vapors of hydrofluoric 
acid (HF) and water. In both cases, gas was released from the silicon oxide and trapped underneath 
the impermeable graphene, resulting in formation of the bubbles. More recently, Georgiou et al. [2] 
reported that bubbles are regularly found at the silicon oxide/graphene interface in large flakes 
obtained by mechanical cleavage. They observed graphene bubbles with diameters ranging from 
tens of nanometers to tens of microns and a variety of shapes (circular, triangular, and diamond). 
Bubbles have also been observed in graphene grown on metals such as Pt (111) [3] and Ru (0001) 
[4]. While the origin of graphene bubbles has not been fully understood and may depend on the 
material systems and experimental conditions, several potential applications of the graphene 
bubbles have emerged. Using highly strained graphene nanobubbles, Levy et al. [3] demonstrated 
enormous pseudo-magnetic fields and suggested strain engineering as a viable means of mechanical 
control over electronic structure of graphene. Georgiou et al. [2] demonstrated controllable 
curvature of graphene bubbles by applying an external electric field, which may be used as optical 
lenses with variable focal length. Zabel et al. [5] used graphene bubbles to study the Raman 
spectrum of graphene under biaxial strain. A well-controlled pressurization method was developed 
by Bunch et al. [6] to form graphene bubbles (or balloons) on patterned substrates, which was used 
to demonstrate the impermeability of graphene to gas molecules and to measure elastic properties of 
graphene. Following a similar approach, Koenig et al. [7] measured the adhesion energy between 
graphene and silicon oxide. On the other hand, Zong et al. [8] used intercalation of nanoparticles to 
generate graphene blisters on silicon surface and thereby provided a measurement of the graphene 
adhesion. 
 
The present study focuses on the mechanics of graphene bubbles in order to establish a theoretical 
relationship between the morphology of graphene bubbles and the mechanical as well as interfacial 
properties of graphene. We present a nonlinear plate theory, adapted for the in-plane and bending 
properties of monolayer graphene. A numerical method is developed to solve the nonlinear 
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equations for circular graphene bubbles, subjected to gas pressure and van der Waals interactions. 
The numerical results are compared to the approximate solutions obtained by analytical methods. 
We show that, with known elastic properties of graphene, the adhesion energy between graphene 
and its substrate can be determined from the measurable dimensions of a graphene bubble (e.g., 
diameter and height). We confirm that the strain of graphene is non-uniform, varying from an 
equibiaxial strain at the center of the bubble to a uniaxial strain at the edge. The magnitude of the 
strain depends on the adhesion energy. The mechanics of graphene bubbles is extended to discuss 
transport of gas molecules among graphene bubbles of different sizes and the coalescence of 
graphene bubbles from a thermodynamics perspective. 
 
2. A Nonlinear Plate Theory for Monolayer Graphene 
 
The mechanical behavior of a graphene monolayer can be described by a mixed continuum 
mechanics formulation mapping a two-dimensional (2D) plane to a three-dimensional (3D) space 
[9]. Under the assumption of relatively small deformation but with moderately large deflection, a 
set of nonlinear equations can be used, which closely resemble the von Karman equations for an 
isotropic elastic thin plate. The only notable difference lies in the bending moduli of graphene. 
Unlike classical plate theory, the bending moduli of monolayer graphene are not directly related to 
the in-plane Young’s modulus and Poisson’s ratio. Instead, they are determined from atomistic 
modeling as independent properties [10-14]. As discussed in a previous study [13], the physical 
origin of the bending moduli of the monolayer graphene is fundamentally different from those in 
classical plate theory. In particular, we note that it is unnecessary to define a thickness for the 
graphene monolayer in the 2D continuum formulation.  
 
Consider a circular graphene membrane subjected to axisymmetric loading. The displacements 
expressed in polar coordinates are: )(ruur  , 0u , and )(rww  . The corresponding in-plane 

strain components are: 
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where E2D is the 2D Young’s modulus of graphene and ν is Poisson’s ratio. The in-plane force 
equilibrium equation reduces to a nonlinear displacement equation 
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where D and DG are the two bending moduli corresponding to the mean curvature and the Gaussian 
curvature, respectively. The moment equilibrium equation leads to another nonlinear displacement 
equation 
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where q is the lateral loading intensity (e.g., pressure). In the present study, the lateral load intensity 
consists of a constant pressure (p) and the van der Waals (vdW) force between graphene and the 
substrate, i.e., vdWpq  , where 0vdW  for attractive force. By a simple model of vdW 

interactions [15], the vdW force is written as a function of deflection: 
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where 0  is the equilibrium separation and   is the interfacial adhesion energy. For monolayer 

graphene on SiO2, experimental measurements have reported values from 0.4 to 0.9 nm for 0  

[16-18] and from 0.09 to 0.45 J/m2 for   [7, 8]. In the present study, we take 6.00  nm and 

1.0 J/m2. For monolayer graphene bubbles, we use E2D = 345 N/m, ν = 0.16, and D = 1.5 eV (or 
equivalently, 0.238 nN-nm). The radii of the graphene bubbles ranges from 10 to 1000 nm, and n = 
1000 is used for the finite difference discretization. 
 
3. Analytical Methods 
 
Several approximate solutions for graphene bubbles were presented in a previous study [19]. They 
are briefly reviewed here for comparison with the numerical results. 
 
3.1. Linear plate solution 
 
For the linear plate analysis, the in-plane strain is assumed to be negligible, and Eq. (8) reduces to 
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Subjected to a uniform lateral load ( pq  ) and clamped boundary condition at the edge (i.e., w = 
dw/dr = 0 at r = a), Eq. (10) can be solved analytically by 
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where a is the bubble radius and 
D
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  is the center deflection (bubble height). 

 
3.2. An approximate membrane solution 
 
For a membrane analysis, it is assumed that the bending stiffness is negligible. The nonlinear 
membrane equations however cannot be solved analytically. An approximate solution was 
developed by the energy method assuming the displacements [19]: 
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 . A more accurate membrane analysis was developed by Hencky [20], 

which included 7 terms in the polynomial expansion of the deflection profile (as opposed to the two 
terms in Eq. 12) with the coefficients determined numerically for specific Poisson’s ratios. In 

particular, for ν = 0.16, the center deflection by Hencky’s solution is:   3/1

2
4 /687.0 DEpah   . 

 
3.3. An approximate nonlinear plate solution 
 
An energy method was used to develop an approximate solution to the nonlinear plate equations by 
assuming a deflection profile in form of (11) along with the radial displacement [19] 
   rccraru 21  . (14) 
Minimization of the potential energy leads to 
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 . It was shown that the approximate solution converges to the 

linear plate solution when the bubble height is small (h < 0.1 nm) but considerably underestimates 
the pressure when h > 1 nm. 
 
4. A Numerical Method 
 
A numerical method is developed to solve the coupled nonlinear equations, (5) and (8). For 

convenience we define an effective thickness, 
D
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 , and re-write the equations in a 

dimensionless form 
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 . The equations are discretized by the finite 

difference method and solved by the Newton-Raphson method. At each iteration, the residuals are 
calculated and a correction vector is calculated as 
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where θ  is a vector of n-1 components ( kθ , k = 1 to n-1) and same for u , f , and g . The 

Jacobian matrix on the right-hand side of (20) consists of four square blocks, each with a rank of 
n-1. For the convergence criterion, we require that the L2-norm of the relative correction vector is 
smaller than a specified tolerance, namely 
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If not satisfied, the iteration procedure repeats with a new approximation, k
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integration: 
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for k = 0 to n-1, and the center deflection is then obtained as 0wh  . Moreover, we calculate the 

strain components at each node according to (1) and (2). 
 
5. Results and Discussions 
 
Using the numerical method in Section 4, we calculated the deflection profiles, w(r), for graphene 
bubbles of various radii. Figure 1(a) shows the normalized deflection for a graphene bubble of 
radius a = 10 nm subject to increasing pressure (without van der Waals interaction). The deflection 
is normalized by the center deflection, h = w0. In comparison, the analytical deflection profiles in 
(11) and (12) from the linear plate solution and the approximate membrane analysis are both 
independent of the pressure after the normalization. The numerical result agrees well with the linear 
plate solution at low pressures. As the pressure increases, the deflection profile approaches the 
membrane solution. Apparently, (12) is a reasonably good approximation for the deflection profile 
at high pressures. A more accurate membrane analysis [20] would yield a better approximation but 
also require a numerical method. Therefore, the analytical solutions in (11) and (12) may be 
considered as the lower and upper bounds for the deflection profiles. 
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Figure 1. (a) Normalized deflection profiles of a graphene bubble (a = 10 nm) subject to increasing pressure; 

(b) Normalized pressure as a function of the center deflection. 
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The center deflection of a graphene bubble is a function of the pressure and the bubble radius. The 
linear plate solution predicts that the center deflection increases linearly with pressure ( ph  ). On 
the other hand, from the membrane analysis, the cube of the center deflection increases linearly 
with pressure ( ph 3 ). We plot the center deflection versus a dimensionless group, )/( 3

2
4 hEpa D , 

as shown in Fig. 1(b). In such a plot, the numerical results for different bubble radii collapse onto 
one master curve. When h > 1 nm, the numerical results agree closely with Hencky’s membrane 
solution, while the simple membrane analysis in Section 3.2 underestimates the normalized pressure. 
It is found that the numerical results can be fitted by a single function that is a simple sum of the 
linear plate solution and the membrane solution: 
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where A and B are two dimensionless functions of Poisson’s ratio. From the membrane solution, 
)(/1 A , which equals 2.825 for 16.0 . On the other hand, Hencky’s solution yields 
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 , defines a length scale for the monolayer graphene. Therefore, the transition 

from the linear plate solution to the membrane solution depends on the ratio ehh / . For relatively 

large bubbles (e.g., a > 100 nm), since the center deflection is typically much greater than eh , the 

second term on the right-hand side of (23) is negligible and Hencky’s membrane solution is 
sufficient. 
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Figure 2. (a) Strain distributions in graphene bubbles (a = 10 nm) subject to increasing pressure; (b) Center 

strain versus h/a. 
 
The strain distribution is important for strain engineering as a potential approach to manipulating 
the electronic properties of graphene [3, 4]. Figure 2(a) shows the strain distribution in graphene 
bubbles. By the symmetry and boundary conditions, the strain is equi-biaxial at the center (r = 0) 
and uniaxial at the edge (r = a). However, the strain distribution in between is very different from 
the prediction by the simple membrane analysis in Section 3.2. By inserting (12) and (13) into (1) 
and (2), the circumferential strain   would decrease linearly from the center to the edge, while 

the radial strain r  first decreases and then increases [19]. Moreover, the analytical membrane 
solution predicts that the normalized strain distribution should be independent of the pressure or the 
bubble radius. However, the numerical results clearly demonstrate that the strain distribution (after 
normalization) depends on both the pressure and the bubble radius. The difference in the strain 
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distribution between the numerical and the analytical solutions can be traced back to the difference 
in the deflection profiles as shown in Fig. 1(a). Furthermore, the in-plane radial displacement 
obtained by the numerical method differs from the analytical assumption in (13). Notably, the radial 
displacement becomes negative near the edge, resulting in compressive circumferential strain 
( 0 ). 

 
The equi-biaxial strain at the center ( 0  r ) is plotted in Figure 3(b) as a function of the 

normalized pressure. Noting that the center strain 2
0 )/( ah  in both analytical solutions, we plot 

the numerical results as a function of h/a in Fig. 2(b). Indeed the numerical results for different 
bubble radii collapse onto one line with the slope 2 in the log-log plot. Therefore, the center strain 
may be written as 
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where )(C  is a dimensionless functions of Poisson’s ratio. By the membrane solution in Section 

3.2, 3/23/1 /)(  C , which equals 1.136 for 16.0 . The numerical results can be fitted 
approximately by taking 76.0)( C . Therefore, the analytical membrane solution overestimates 
the center strain considerably. 
 
Based on the membrane analysis, the adhesion energy of between graphene and its substrate can be 
determined from the measurements of the equilibrium bubble size (a and h) [19]. With the number 
of gas molecules (N) fixed inside the bubble, the potential energy is obtained as a function of the 
bubble radius 

   









4/1
2

4/3

2/5
0

)(
ln

4
,

DB
B

B

ETNk

ap
TNk

TNk
Na , (25) 

where p0 is the ambient pressure outside the bubble and kB is Boltzmann constant. The first term on 
the right hand side of (25) is the strain energy in graphene, which is independent of the bubble size 
under the condition of constant N. The second term is the potential energy of the gas, relative to the 
reference state in the ambient condition. As the bubble radius a increases, the total potential energy 
decreases. Meanwhile, the interfacial energy increases as part of the graphene is detached from the 
substrate. The equilibrium bubble radius is attained when the potential energy of the bubble is 
balanced by the adhesion energy (Γ) of the graphene/substrate interface, which gives rise to the 
adhesion energy 
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Combining (24) and (26), we have   2/1

20 / DE . Therefore, the magnitude of the strain depends 

on the adhesion energy. This suggests that strain measurement could be used as an alternate 
approach for determining the adhesion energy [19]. On the other hand, to achieve a relatively large 
strain (> 5%) for strain engineering to manipulate the electronic properties of graphene [3, 4], the 
adhesion energy must be sufficiently high. 
 
Georgiou et al. [2] measured the cross-sectional profile of a graphene bubble on an oxidized silicon 
substrate by atomic force microscope (AFM) in tapping mode. The bubble radius and central 
deflection were determined as 1183a   nm and 132h   nm. Using these values in (26), we 
obtain the adhesion energy Γ = 0.097 J/m2. The data set from Koenig et al. [7] puts the adhesion 
energy in the range between 0.25 and 0.43 J/m2, with an average value of 0.33 J/m2. These values 
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are lower than the reported value (0.45 J/m2) for monolayer graphene on silicon oxide [7]. The 
difference is partly attributed to the approximations made in the present membrane analysis as 
opposed to Hencky’s solution used by Koenig et al. [7]. The scattering of the adhesion energy from 
these data suggest that the adhesion energy could be non-uniform due to the statistical nature of the 
surface roughness [21]. 
 
Stolyarova et al. [1] observed coalescence of graphene bubbles during annealing, which can be 
understood as a result of the transport of gas molecules along the interface driven by the different 
pressures in bubbles of different sizes. The membrane analysis predicts that the pressure inside the 
graphene bubble is inversely proportional to the bubble radius [19]. Consequently, the pressure is 
higher in the smaller bubbles and the pressure difference drives the gas molecules to diffuse from 
smaller bubbles to larger bubbles. The diffusion process is kinetically mediated and is enhanced by 
thermal annealing so that the large bubbles grow larger while the small bubbles disappear, similar to 
the Ostwald ripening process in thin film growth. The coalescence of graphene bubbles may also be 
understood from an energy consideration. It can be shown that the free energy of two small bubbles 
is greater than the free energy of one large bubble with the same total number of gas molecules [19]. 
Therefore, there exists a thermodynamic driving force for the two small bubbles to coalesce so that 
the total free energy is reduced. In other words, while each graphene bubble is in a 
thermodynamically equilibrium state, the system with a group of graphene bubbles is not in 
equilibrium. Since the graphene is impermeable [6], the kinetic pathways for the transport of gas 
molecules may include the graphene/substrate interface and the substrate bulk. 
 
Figure 3(a) shows the deflection profiles of a graphene bubble (a = 10 nm) under the effect of vdW 
interaction. When the pressure is relatively low, the deflection is reduced considerably by the 
attractive vdW force. On the other hand, when the pressure is high, the effect of vdW force on the 
deflection is negligible. As shown in Fig. 3(b), the distribution of vdW force is non-uniform and 
depends on the pressure. In the spirit of nonlinear fracture mechanics [22], we may define an 
interaction zone where the vdW force is appreciable in comparison with the pressure, e.g., 

10/pvdW  . Subject to a low pressure, the interaction zone spans the entire area underneath the 

bubble, indicating large-scale bridging from a fracture mechanics perspective. At a higher pressure 
level, the interaction zone is much smaller, where the condition of small-scale bridging prevails. 
Consequently, in the presence of vdW interactions, the relationship between the center deflection 
and the pressure becomes nonlinear at low pressures. 
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Figure 3. (a) Effect of the vdW interaction on the deflection profile of a graphene bubble (a = 10 nm); (b) 

Distributions of the vdW force intensity. 
 
 

a b 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-9- 
 

6. Summary 
 
A nonlinear plate theory is adapted to describe the deformation of a graphene monolayer subject to 
lateral loads. A numerical method is developed to solve the nonlinear equations for circular 
graphene bubbles. In comparison to approximate solutions by analytical methods, it is found that 
the deflection profile and the strain distribution are generally not well described by the analytical 
solutions. Based on the numerical results, approximate formulae for the center deflection and center 
strain are suggested. We show that, with known elastic properties of graphene, the adhesion energy 
between graphene and its substrate can be determined from the measurable dimensions of a 
graphene bubble (e.g., diameter and height). The mechanics of graphene bubbles is extended to 
discuss transport of gas molecules among graphene bubbles of different sizes and the coalescence of 
graphene bubbles from a thermodynamics perspective. Moreover, the effect of van der Waals 
interactions between graphene and its substrate is found to be significant when the center deflection 
is relatively small due to large-scale adhesive interactions. 
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