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Abstract The accurate and efficient evaluation of nearly singular integrals is one of the major concerned 
problems in the implementation of the boundary element method. Among the various commonly used 
nonlinear transformation methods, the distance transformation technique seems to be a promising method to 
dealing with various orders of nearly singular integrals both in potential and elasticity problems. In this paper, 
some drawbacks of the conventional distance transformation, such as the sensitivity to the position of 
projection point, are investigated by numerical tests. And a general distance transformation technique is 
developed to circumvent these drawbacks, which is aimed to remove or weaken the limitations of the 
projection point. Numerical examples are presented for curved line elements to validate the accuracy and 
efficiency of our method. 
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1. Introduction 
 
The nearly singular integrals arise when the source point is very close to but not on the integration 
element in the implementation of boundary element method (BEM). The conventional Gauss 
quadrature becomes inefficient or even inaccurate to evaluate such integrals. The accurate and 
efficient evaluation of nearly singular integrals plays an important role in many cases, especially 
involving problems of thin or shell-like structures [1-3], the unknowns around crack tips [4], the 
contact problems [5] and the sensitivity problems [6]. 
Various numerical techniques have been proposed to remove the near singularities, such as the 
element subdivision technique [7], the rigid body displacement solutions [8], global regularization 
method [9, 10], semi-analytical and analytical algorithms [11, 12], and the nonlinear transformation 
method [13-25]. The element subdivision technique is simple but not recommended because of its 
inefficient. The closer the computing point is to the integration element, the more subdivisions are 
needed, which consumes great computation effort and may increase the accumulative error. The 
rigid body displacement method constructs a nearly zero factor in the denominator of kernel 
function by the zero factor in density function using the regularization ideas, but the accuracy of the 
results are not satisfactory. The analytical and semi-analytical algorithms are effective but only 
limited to linear or planar elements. Curved elements must be divided into a large number of linear 
or planar elements, thus losing efficiency and accuracy. At present, the most widely used methods 
are various nonlinear transformations, such as the cubic polynomial transformation [13], the 
bi-cubic transformation [14], the sigmoidal and semi-sigmoidal transformation [15, 16], the 
coordinate optimization transformation [17], the attenuation mapping method [18], the rational 
transformation [19], the PART method [20], and the sinh transformation [21]. The basic ideas of the 
above transformations can be generalized into two categories: one is removing the nearly zero 
factor in the denominator of the kernels using zero factor, the other is converting the nearly zero 
factor in the denominator of the kernels to be part of the numerator. However, most nonlinear 
transformations are limited to certain order of singularities or specific boundary element. The 
distance transformation method [22-25], which has been proposed by Ma, is a general strategy to 
deal with nearly singular integrals in BEM. This promising method is derived from Guiggiani’s 
excellent work for dealing with singular boundary integrals [26]. It has been applied to two- and 
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three-dimensional nearly singular integrals with various orders both in potential and elasticity 
problems, and attractive results have been presented.  
However, as the definition of the projection point, finding the projection point is essential for each 
computation, which may lower the efficiency of the method. And numerical tests in Section 4.1 
show that the local coordinate of the projection point must be calculated accurately, otherwise 
undesirable results will be obtained. Moreover, if the projection point is located on the tangential 
line through the projection point, the method failed and another transformation should be taken. In 
this paper, a general distance transformation is developed to circumvent these drawbacks. 
The paper is organized as follows. The general form of nearly singular integrals is described in 
Section 2. The conventional distance transformation is briefly reviewed in Section 3. The 
drawbacks for conventional distance transformation are presented by some numerical tests，and a 
general distance transformation is developed in the Section 4. Some illustrative numerical examples 
are given to verify the efficiency and accuracy of presented method in Section 5. The paper ends 
with conclusions in Section 6. 
2. Statement of the problem 
Considering the description of 2D potential problems in the domain Ω  enclosed by boundary Γ , 
the two basic integral equations are written in terms of the flux q  and the potential u  on the 
boundary as follows: 

 * *( ) ( ) ( ) ( , )d ( ) ( ) ( , )d ( )c u q u u q
Γ Γ

= Γ − Γ∫ ∫y y x x y x x x y x  (1) 

 * *( ) ( ) ( ) ( , )d ( ) ( ) ( , )d ( )k k kc u q u u q
Γ Γ

= Γ − Γ∫ ∫y y x x y x x x y x  (2) 

where y  and x  are the source and the field points, respectively. c  is a coefficient depending on 
the smoothness of the boundary at the source point y . *( , )u x y  represents the fundamental 
solution for 2D potential problems expressed as 

 * 1 1( , ) log( )
2

u
rπ

=x y  (3) 

and *( , )ku x y , *( , )q x y  and *( , )kq x y  are the derived fundamental solutions 

 
* * *

* * *( , ) ( , ) ( , )( , ) , ( , ) , ( , )k k
k k

u u qu q q
x x

∂ ∂ ∂
= = =

∂ ∂ ∂
x y x y x yx y x y x y

n
 (4) 

where r  denotes the Euclidean distance between the source and the field points and n  is the unit 
outward normal on the boundary Γ . 
 To evaluate the boundary integrals numerically, the boundary Γ  is discretized into a number 
of linear or quadratic elements and then the boundary integrations are performed on each element. 
When the source point is very close to but not on the integration element, nearly singular integrals 
arise with different orders.  
 In this paper, we deal with these boundary integrals with nearly singularity of the following 
forms: 

 
1

1
I (1 / ) ( ) ( ) ( )diO r f Gξ φ ξ ξ ξ

−
= ∫  (5) 

where (1 / )O r  represents the nearly singular integral kernels, log(1 / )r  for nearly weak singular 
integrals, 1 / r  for nearly strong singular integrals and 21 / r  for nearly hyper-singular integrals. 

( )f ξ  is a bounded function for local coordinate ξ , [ 1,1]ξ ∈ − . ( )iφ ξ  denotes the shape 
functions and ( )G ξ  is the Jacobian of the transformation from dΓ  to dξ . As the singular 
integrals over linear elements can be computed analytically, only quadratic elements are discussed 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-3- 
 

in this paper. 
3. Conventional distance transformation 
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Figure 1. Definition of the projection point cx  

In this section, we review the definition of the conventional distance function and the variable 
transformation technique. As shown in Fig. 1, the minimum distance 0r  from the source point to 
the boundary element is defined perpendicular to the tangential line, through the projection point 

cx and the source point y . By employing the first-order Taylor expansion in the neighborhood of 
the projection point, we have 

 2
0| ( ) ( ) (| | )c c k

k k k k k k c k
xx y x x x y c r n c O cξ ξ ξ
ξ =

∂
− = − + − = − + + −

∂
 (6) 

where c  is the local coordinate of the projection point cx . The real distance can be expanded to 
the following form: 

 

2
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0 0

2 2 2 3
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( ) (| | )
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c
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x x xr c r n c c O c

r G c O c

G g O c

ξ ξ

ξ

ξ ξ ξ
ξ ξ ξ
ξ ξ

ξ ξ

= =

= − −
∂ ∂ ∂

= + − + − + −
∂ ∂ ∂

= + − + −

= + −

 (7) 

where cG  stands for the Jacobian at point c  and ( )g ξ  is the distance function defined as 

 2 2( ) ( )g cξ α ξ= + −  (8) 

This definition represents the distance in the local parametric plane and 0 / cr Gα = . When the 
projection point is inside of the boundary element, the integration span is split into two parts at 
point c , taking the following one-order transformation pairs for the integration variable: 
 ( ) log[ ( ) ( )]g cη ξ ξ ξ= + −  (9) 

 21( ) [exp( ) exp( )]
2

cξ η η α η= − − +  (10) 

Substituting Eq. (9) and (10) into Eq. (5) yields 
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 (11) 

It is easily can be seen that the distance function ( )g ξ  and the Jacobian of transformation play the 
role of damping out the nearly singularity of the kernels. For the possibility of unifying and 
simplifying the computer code, the one-order transformation is used for various orders of singularity, 
which can obtain an acceptable result even for the hyper-singular kernel [23]. 
4. General distance transformation 
4.1. Sensitivity to the position of projection point 
As we know, finding the accurate position of the projection point is an essential step for the 
successful implementation of the distance transformation method when dealing with nearly singular 
integrals. The Newton’s method is widely used to finding approximate position of the projection 
point and an inevitable error will be produced. In this section, we investigate the influence of the 
position of the projection point on the accuracy of the distance transformation method. Here we 
assume the source point is fixed and the local coordinate c

aξ  of the approximate projection point is 
determined by an offset parameter k  with the following equation: 

 c c c
a kξ ξ ξ= +  (12) 

where cξ  is the accurate local coordinate of the projection point and k  indicates the offset caused 
by the error during finding the projection point. Obviously, the approximate projection point is 
coincident with the accurate one when 0k = . 
 Considering the first example in Ref. [23], the relative distance describing the closeness of the 
near singular point to the boundary is taken as 410−  and ten points Gauss quadrature is used for all 
the computations. The integrals with kernel *u  and *q  corresponding to different offset values of 
k  have been computed using the conventional distance transformation and the reference value are 
obtained by subdivision method with enough subelements. Numerical results are shown in Fig. 2 
and Fig. 3, and it can be easily seen that the results obtained with conventional distance 
transformation is very sensitive to the position of the projection point and poor results can be 
obtained even with a very little deviation of the position of the projection point. Besides, the results 
get much worse for high order singular integrals. 
 Now the drawbacks of the distance transformation method are very obvious: the computation of 
the position of the projection point should be very rigorous and the process of finding the projection 
point is time-consuming but essential for each source point, which may lower the computational 
efficiency. Is the projection point really essential? The work presented later is tried to overcome the 
shortcomings of the conventional distance transformation method. 
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Figure 2. Various integrals with kernel *u  
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Figure 3. Various integrals with kernel *q  

4.2. Definition of general distance function 
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Figure 4. General definition of the projection point cx  
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In this section, a general projection point 0cx  is defined to construct a new distance function as 
shown in Fig. 4. The general projection point 0cx  can be located inside the integration element or 
on one node of the element. τ  and n  are the unit tangential and outward normal vector, 
respectively. A new vector d  from the source point y  to the general projection point 0cx  is 
defined additionally, which is not required to be perpendicular to the tangential line through 0cx . 
By applying the first-order Taylor expansion in the neighborhood of point 0cx , we have 

 0 0

0

2
0 0| ( ) (| | )c c k

k k k k k k c k
xx y x x x y c d O cξ ξ ξ
ξ =

∂
− = − + − = − + + −

∂
 (13) 

where 0c  is the local coordinate of the general projection point 0cx , and kd  is one of the 
components of d . The real distance can also be expanded to the following form: 

 
0 0

2

2 2 3
0 0 0

( ) ( )( )

| ( ) 2 | ( ) (| | )

k k k k

k k k
k c k c

r x y x y
x x xd c d c O cξ ξ

ξ

ξ ξ ξ
ξ ξ ξ= =

= − −
∂ ∂ ∂

= + − + − + −
∂ ∂ ∂

 (14) 

Noted that 

 
0 0 002 | ( ) 2 ( ) 2 cosk

k c c c
xd c G G dξ ξ θ
ξ =

∂
− = =

∂
d τg  (15) 

where 
0cG  stands for the Jacobian at point 0c  and θ  is the angle between d  and τ , which is 

only related to the position of 0cx  and y .The real distance can be rewritten as 

 
0 0

0

0

2 2 2 2 3
0 0 0

2 2 2 3
0 0 0

2 2 3
0

( ) ( ) 2 cos ( ) (| | )

[ ( ) 2 cos ( )] (| | )

( ) (| | )

c c

c

c

r d G c G d c O c

G c c O c

G g O c

ξ ξ θ ξ ξ

α ξ α θ ξ ξ

ξ ξ

= + − + − + −

= + − + − + −

= + −

 (16) 

where ( )g ξ  is the general distance function defined as follows: 

 2 2
0 0( ) ( ) 2 cos ( )g c cξ α ξ α θ ξ= + − + −  (17) 

with α  being 
0

/ cd G . ( )g ξ  represents the distance in the local parametric plane as shown in Fig. 
5, which can be proved using the cosine law. 

y

0c1+ 1−

α

ξ

( )g ξ

θ

 
Figure 5. The distance function ( )g ξ  in the local parametric plane 

Now we introduce a similar pair of transformations for the integration variable, which is expressed 
as 

 0( ) log[ ( ) ( ) cos ]g cη ξ ξ ξ α θ= + − +  (18) 
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 2 2
0

1( ) [( cos ) ]
2

e e cη ηξ η α θ α−= − − +  (19) 

After splitting the integration element into two parts at point 0( cos )c α θ− , which is unnecessary if 
the general projection point is located at the vertex of the integration element, we can obtain the 
distance-transformed form of the near singular boundary integrals as Eq. (20). Now the nearly 
singular integrations with various orders can be computed accurately even if 0cx  is a little far away 
from the conventional projection point. 
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∫ ∫

∫

∫ ( ( )) ( ( ))dG gξ η ξ η η

 (20) 

5. Numerical examples 
In this section, numerical examples for curved lines are presented to validate the accuracy and 
efficiency of our method. The relative distance is given in terms of 0 /r l  to describe the influence 
of the nearly singular integrals over each element, where 0r  is the minimum distance as shown in 
Fig.1 and l  stands for the length of the element. For the purpose of error estimation, the relative 
error is defined as follows: 

 num ref

ref

I I
error

I
−

=  (21) 

where the subscripts num  and ref  refer to the numerical and reference solutions, respectively. 
The reference solutions are obtained by subdivision method with enough subelements. Ten Gauss 
points are used in all cases for the convenience of comparisons. 
The numerical example in Ref. [23] is taken as the second example. The example is computed over 
a curved boundary element with the node coordinates of (2.0, 0.0), (1.0, 1.0), and (0.0, 0.5). The 
local coordinate of the conventional projection point c  is set outside of the element interval and 

1.01c = . The relative error of nearly singular integrals using general and conventional distance 
transformation is presented in Table 1. The local coordinate of the general projection point 0c  is 
located at 0.0. For results obtained with the conventional distance transformation, the precision will 
decline as the range of 0 /r l . The results using the general distance transformation can keep high 
precision in a wide range of 0 /r l , far better than results obtained by conventional distance 
transformation.  
Table 1 Relative error of nearly singular integrals using general and conventional distance 
transformation 

0 /r l  110−  210−  310−  410−  510−  610−  

Reference -0.08013504 -0.07159177 -0.07055153 -0.07044348 -0.07043263 -0.07043155 

General -1.3931E-07 -4.8909E-08 -3.7454E-08 -3.4041E-08 -3.3901E-08 -3.3889E-08 *
1uφ  

Conventional -2.7597E-06 6.2638E-05 8.6432E-07 -3.7262E-07 -1.7228E-05 2.1675E-03 

*
1 1uφ  Reference 0.03240507 0.03656118 0.03868258 0.03896392 0.03899269 0.03899557 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-8- 
 

General -2.9928E-06 -2.9649E-07 -5.0784E-06 -3.8277E-06 -3.6064E-06 -3.5835E-06 

Conventional 2.9397E-06 -3.4924E-04 -6.5327E-04 -6.5951E-04 -6.7930E-04 1.8681E-03 

Reference -0.01156755 -0.02226277 -0.02430147 -0.02448001 -0.02449723 -0.02449894 

General -4.1133E-05 8.0888E-07 2.1044E-06 6.5314E-06 6.8976E-06 6.9330E-06 *
1 2uφ  

Conventional -1.5371E-05 -3.5901E-04 -9.5886E-05 -8.7302E-05 -9.4695E-05 8.8743E-04 

Reference -0.04679418 -0.04497265 -0.04301120 -0.04278013 -0.04275696 -0.04275464 

General 8.2062E-06 -2.3720E-07 2.6763E-06 2.4552E-07 -4.2287E-08 -7.1289E-08 *
1qφ  

Conventional 5.2246E-06 -2.3952E-04 -4.5426E-04 -4.6333E-04 -4.7736E-04 1.2603E-03 

The influence of the location of the general projection point is also studied for curved boundary 
element. As the general projection point moves along the element, computations for nearly singular 
integrals with 0 /r l  being 410−  are performed and the relative error is given out in Table 2. As the 
general projection point is located at the middle of the element, best results can be got compared 
with other locations. The results are also acceptable relative to those obtained with the conventional 
distance transformation. 
Table 2 Relative error of nearly singular integrals with various general projection points 

0c  -1.0 -0.5 0.0 0.5 1.0 Conventional

*
2uφ  -3.1992E-03 -5.8251E-04 -3.9583E-07 1.8035E-05 3.1392E-03 3.1624E-03 

*
2 1uφ  2.1904E-03 7.7142E-04 2.4198E-06 1.2023E-04 1.7605E-04 1.7676E-04 

*
2 2uφ  4.3266E-03 1.4958E-03 4.2367E-06 2.2400E-04 1.9356E-04 1.9587E-04 

*
2qφ  -4.4855E-05 -3.7130E-05 -4.1349E-07 -1.6025E-05 2.4758E-04 2.4803E-04 

As the local coordinate of the conventional projection c  changes from 1.1 to 1.000001, the source 
point y  becomes increasingly closer to the element, which may lead to poor results during 
computation of nearly singular integrals. Here we consider 0 0c =  and 4

0 / 10r l −=  to verify the 
effectiveness of the conventional and general distance transformation. The results with kernel *u  
as c  varies from 1.1 to 1.000001 are listed Table 3. It can be easily seen that our method is less 
sensitive to different values of c  and better results can be obtained than the conventional distance 
transformation. 
Table 3 Relative error of weakly singular integrals with different values of c  

c  1.1 1.01 1.001 1.0001 1.00001 1.000001 

General -3.7832E-08 -3.4041E-08 7.3708E-07 1.1750E-06 1.2146E-06 1.2184E-06 
*

1uφ  
Conventional -3.0558E-06 -3.7262E-07 -2.1542E-03 -1.0368E-02 -1.4545E-02 -1.5049E-02 

General -5.1030E-08 -3.9583E-07 -4.0356E-05 -6.7932E-05 -7.0701E-05 -7.0970E-05 
*

2uφ  
Conventional -1.5179E-06 3.1624E-03 4.2508E-02 2.1993E-01 3.1620E-01 3.2782E-01 

General 2.3404E-07 -9.6050E-07 -3.9180E-04 -1.3210E-03 -1.5231E-03 -1.5434E-03 
*

3uφ  
Conventional -6.9787E-06 1.0358E-04 6.6305E-04 4.0438E-03 5.5950E-03 5.7729E-03 

 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-9- 
 

6. Numerical examples 
In this paper, the drawbacks of the conventional distance technique, such as the sensitivity to the 
position of projection point, are investigated by numerical tests. A general distance transformation 
technique is developed to remove or weaken the limitations of projection point, which is based on a 
more general definition of the projection point. The presented method has been verified through 
numerical examples with different kernel functions and relative distances.  
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