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Abstract  Defects play crucial role in the process of  nucleation and propagation of fracture. We study 
fracture as a non-equilibrium statistical mechanical system with a threshold activated extremal dynamics. 
The dispersion ߜ in the breaking thresholds shows a transition at ߜ ൌ ߜ c. Forߜ ൏  c, the fractureߜ
or failure takes place sharply at a certain applied stress or voltage. For ߜ ൐  c, the fracture orߜ
failure takes place gradually with increasing stress or voltage, leading to a non-linear region in the 
stress-strain or current-voltage curve prior to failure. We discuss the transition point For ߜc from 
the point of view of ductile-brittle transition. We present analytical results on fiber bundle model 
and numerical results on two dimensional random resistor network model.  
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1. Introduction 
 
In material science and engineering ductile and brittle behaviors have received lots of attention over 
the past years. It is widely known that most ductile materials become brittle when the temperature 
or pressure is lowered or by radiation bombardment and atmospheric reaction. This phenomenon, 
known as ductile-brittle transition, has been extensively studied by engineers, material scientists and 
physicists. Disorder is known to play a crucial role in fracture. It is now known that topological 
disorders like dislocations and their cooperative motion give rise to ductile fracture. Brittle fracture 
on the other hand originates from a single micro-crack, the most vulnerable one. Thus ductile 
fracture can be thought of as a co-operative process of defects whereas brittle fracture is determined 
by extreme events [1]. Though several aspects of fracture are now understood, the mechanism and 
the nature of ductile-brittle transition is not clear yet. In this paper, we study the effect of dispersion 
(δ) in the local strengths in a material on the nucleation and propagation of fracture. We show for 
low δ the system behaves like a brittle material where failure happens sharply at a certain value of 
applied stress or voltage and the response of the system remains linear up to the failure point. For 
high δ the breakdown of the system happens gradually through local failures till the entire system 
breaks. The stress-strain curve in the elastic system or the voltage-current characteristics in 
electrical system shows non-linear region prior to failure. We argue for a transition point δc 
separating the low and high δ regions.  
 We have studied two models: fiber bundle model and random resistor network model. The fiber 
bundle model is solved analytically under mean field approximation. We have provided the 
numerical results for both the models. The models perceive fracture as a threshold activated 
extremal dynamical system. The disorder in these models is introduced in terms of random  
threshold stress of individual fibers or current in resistors. 
We have found a transition point of threshold distribution (δ = δc) which clearly separates two 
different regions in the model. For δ < δc, the fracture phenomena is very sharp and similar to that 
of brittle fracture. The sharpness of this failure is expressed by the sudden jump of the fraction of 
unbroken bonds in fiber bundle model and conductance in random resistor network model, at the 
fracture point. Where for δ > δc, the bonds or resistors break in a correlated manner producing 
avalanches of all sizes and the model shows the features of ductility. We have also studied the 
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mechanical and electrical response of the model. For δ less then δc the response curve shows a 
perfectly linear brittle like nature where as for δ greater than δc, the response curve contains a 
ductile like non-linear or plastic region.  
   
2. Fiber Bundle Model 
  
The review of modern physics written by S. Pradhan, A.Hansen and B.K.Chakrabarti has a very 
good overview on fiber bundle model [2]. The model consist of two parallel bars between which 
rigid fibers are attached (Fig 1a ). One of the two bars is fixed and an amount of force F is applied 
on the other one. If there are N number of fibers then force per fiber i.e stress applied on the system 
is, f0 =F/N. 
 

                

 

        Figure 1a: Fiber Bundle Model                                        Figure 
1b: Threshold Distribution 

      
Every fiber has some threshold stress value and when the external stress exceeds this value it breaks. 
After breaking of one fiber the stress is re-distributed among all other fibers according to global stress 
re-distribution scheme; which would increase the stress and may cause further breaking of fibers. For 
example, at a constant applied force F, the re-distributed stress will be F/(N-1) after breaking of one 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-3- 
 

fiber, F/(N-2) after breaking of two fibers and so on. This process will continue until either all the 
fibers break or the redistributed stress is less than the next threshold value. At this stage the model 
comes to equilibrium. The number of remaining fibers at each equilibrium is denoted by Neq. Then 
the fraction of fibers remained at equilibrium point is neq = Neq/N. Next we increase the external stress 
(F→F+ΔF); which leads to further breaking, re-distribution and equilibration. This process goes on 
until all the fibers break. The threshold stress is given to the fibers in a random way, picking random 
numbers between 0 to 1 from an uniform distribution around any mean value C and width δr and δl 
respectively on right and left side of the mean value (Fig 1b ). We are considering the vulnerability of 
the defect in the form of a breaking threshold of a fiber. The threshold distribution represents the 
fluctuations of these vulnerabilities in mean field limit (where the stress fluctuation on the bonds are 
neglected). The fiber bundle model gives us an idea of the correlations in the breaking processes in 
fibers. The fluctuations in the breaking threshold gives rise to the cooperative nature in the breaking 
processes in fibers which is the essence of ductile fracture. 
 
2.1 Analytical Calculations 
 
In this paper we provide the analytical calculations for the static and dynamic behavior of the model. 
We have compared our results with some previously calculated values depending on some specific 
choices of the mean and width of threshold distribution. At first we will study the distribution for 
giving threshold to the fibers. From figure 1b we can see that the mean is at C which is in between 0 
and 1. Then the point ‘a’ and ‘b’ is at (C− δl) and (C+ δr) respectively. Now we can take δr=δ and 
relate this with δl by the relation : δl=αδr=αδ. For the analytical calculations we will take α=1. This 
will give us a distribution of width 2δ ranging from a to b. Then the fraction of broken bond at 
every equilibrium will be given by 
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We are interested in the region a ≤ f0/neq ≤ b as the other regions are quite trivial. For f0/neq > b, all 
fibers are broken while for f0/neq < a, all fibers are intact.  
 
2.1.1 Determination of fraction of unbroken bonds at equilibrium points 
 
Within the region a ≤ f0/neq ≤ b we can express the fraction of unbroken bonds as 

                                                    			1 െ ݊௘௤ ൌ ׬	
ଵ

ଶఋ
ߪ݀

௙బ ௡೐೜ൗ
௔ 	 

                                                                     =  
)(ߜ1/2) ଴݂/݊௘௤ െ ܽ	)     ………….2          
                                                                										 
This will give us a quadratic equation of neq : 
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The solution of the above equation will give us the fraction of unbroken bonds : 
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2.1.2 Determination of critical stress of the model 
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At critical point all the bonds break on application of an external stress, fc, known as critical stress. 
The number of fractional bonds remaining just before the breakdown is nc. Thus at f0=fc, neq has 
only one value. This implies that the term in the square root in Eq.(4) should be zero; which in turn 
gives us, 
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2.1.3 Fraction of unbroken bonds at critical stress 
 
We can get the fraction of unbroken bond at critical stress by inserting the value of fc from Eq.(5) in 
Eq.(4). Then we will get 
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We find from Eq.(6), nc starts increasing from a value 0.5 at ߜ ൌ 0.5 and reaches a value 1 at 
ߜ ൌ ߜ c. Forߜ ൏  .c, nc remains at 1 since it is at its maximum point and can’t attain a higher valueߜ
 
2.1.4 Study of Ductile-Brittle transition point 
 
We have the expression of the critical stress given by Eq.(5). Now for f0/neq < a, all bonds are intact 
and at the critical limit we can write 

଴݂

݊௘௤
|௙బୀ௙೎,௡೐೜ୀ௡೎ୀଵ ൌ ܽ										 ………7 

Replacing the value of fc from Eq.(5) in Eq.(7) we get the critical value of ߜሺൎ  : ௖ሻ asߜ
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2.2 Numerical Results 
 
For numerical results we will set C=0.5 and α=1. This gives a threshold distribution with a mean at 
0.5 and width δ on both side of the mean. The system size is taken to be 106. All simulated results are 
over 100 configuration averages.  
 
2.2.1 Variation of fraction of unbroken bonds (neq) with applied stress (f0)  
 
We have plotted the fraction of unbroken bonds at each equilibrium (neq) with applied stress (f0) for 
a series of δ’s between 0.1 and 0.5. The results are given by figure 2. As δ increases the critical 
applied stress(fc) at which the total model breaks decreases from 0.5 and reaches 0.25 at δ=0.5.  
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                      Figure 2: Fraction of unbroken bonds(neq) with applied stress(f0) 
 
Moreover up to a certain value δ≈0.17, the fraction of unbroken bonds at critical point (nc) remains 
1. Beyond this value, nc starts decreasing and comes to a value 0.5 at δ=0.5. The point δ≈0.17 is like 
a critical point. This is quite consistent with the value we obtained analytically. At one side of the 
this point the model behaves like ductile materials showing a fracture through a number of 
equilibrium configurations at a low critical stress; where on the other side it behaves like brittle 
materials showing an abrupt fracture at a higher critical stress. We have studied this critical point in 
detail in our other simulated results. 
 
2.2.2 Variation of redistributed stress (f=f0/neq) with applied stress (f0) for different δ’s 
 
Since the fibers are totally rigid, there is no strain in the model in true sense. We will treat the 
re-distributed stress as strain since the non-linearity is introduced in the model through this 
re-distributed stress.  
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                                  Figure 3: Stress-strain curve (f0 vs f0/neq) for the model 

 
This is very similar to the response curve of mechanical systems. We have plotted f0 with f0/neq for 
different δ’s with in 0.1 and 0.5. Figure 3 shows that for δ≤0.15, the model behaves like brittle 
materials while for δ≥0.2 the model shows ductility. There must be a critical value of threshold 
distribution width (δc) within the range 0.15 < δc < 0.2, where this ductile-brittle like transition 
occurs. 
 
2.2.3 Variation of critical stress (fc) with threshold distribution width (δ) 
 
We have already shown that the critical stress to create fracture in the model increases with 
decreasing δ values. Figure 4 gives us an idea how this critical stress decreases with a continuous 
increase in threshold distribution width. Figure 4 shows that, the critical stress (fc) decreases with 
increasing δ and falls from 0.4 to 0.25 within the range between 0.1 and 0.25 in δ value. Though the 
transition point is not quite evident from the plot, we can estimate it as the average of the above 
mentioned δ region. So, from above study we get δc≈0.17. This agrees with the value we obtained 
analytically and other simulated results. The variation of critical stress (fc) with δ and the nature of 
response curve is obtained before in two dimensional fiber bundle model which consists of two 
square plates in which fibers are intact [3]. We have reproduced the same result in a relatively easier 
model. 
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                                     Figure 4: Variation of critical stress (fc) with δ 

  
2.2.4 Fraction of unbroken bonds (nc) at critical stress with threshold distribution width (δ) 
 
Above study of critical stress is unable to give us a clear distinction between ductile and brittle 
region in the model. This distinction can be drawn from the study of fraction of unbroken bonds at 
critical point (nc) with varying δ value.  
 

     

                                                       Figure 5: Variation of nc with δ 

One of the strong points that helps us to denote low δ region as brittle is, the value nc remains 1 up 
to a certain low value of δ characterizing a abrupt fracture in the model. Figure 5 reflects the same 
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fact. Up to a value δc≈0.17, nc remains 1. This is the brittle region for the model. If we increase δ 
beyond this  nc starts to fall and goes to 0.5 at  δ=0.5. This is the ductile region. The above critical 
point (δc≈0.17) separates these two regions very clearly. 
 
2.2.5 Variation of (fc/nc) with threshold distribution width (δ) 
 
A plot of f0/neq with δ gives us a clear idea about the point at which the ductile to brittle like 
transition occurs. The point with coordinate (f0/neq=0.32, δc≈0.17) in the plot denotes the transition 
point from brittle to ductile region and vice verse.  
 

           

                                                        Figure 6: Variation of  fc/nc 
with δ 

 
The obtained value of δ at which the transition occurs is δc≈0.17; which is very similar to the values 
obtained from other numerical studies and analytical calculation. 
 
2.2.7 Phase diagram for the model 
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                                    Figure 7: Phase diagram for fiber bundle model 

We have constructed a phase diagram for the model and given by figure 7. The darkest color 
corresponds to neq=0 and the lightest color for neq=1. A very important observation is related to this 
diagram. For δ<0.166, neq fall to zero abruptly. When we cross this particular point the behaviour of 
neq changes. For δ>0.166, neq falls to zero after crossing a number of equilibrium points. This is the 
point where the transition occurs. On one side of this point the material shows ductile like fracture 
and on the other side the fracture resembles abrupt brittle fracture. 
 
3. RANDOM RESISTOR NETWORK MODEL  
 
We have constructed a tilted square lattice whose each bond is a resistor with a resistance 1. A 
potential difference of  V volts is applied to two opposite ends of the lattice. On the other two ends 
periodic boundary condition is applied (Fig 8a). All resistors are given a random threshold taken 
from the same uniform distribution same as the case of fiber bundle model. 
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Figure 8a: Random resistor network model               Figure 8b: Response of individual 
resistors 

 

 The potential at each lattice point is calculated by solving ‘Kirchoff's law’ with a series of iterations. 
Whenever the potential drop between two lattice points becomes less than the threshold value given 
to the resistor joining these two points, the resistor breaks irreversibly (Fig 8b). Then we apply 
‘Kirchoff's law’ again to calculate the new potentials due to the breaking of the fiber. When no more 
fiber breaks, we increase the applied potential and do the same thing. This process goes on until the  
conductance  of the system becomes zero. This is the critical point for the model. 
 
3.1 Numerical Results  
 
For numerical simulations we have taken the same specifications like fiber bundle model. The 
lattice size is taken to be 16×16. 
 
 
3.1.2. Variation of conductance (G) with applied voltage 
 
Conductance is the parameter which denotes the fracture point for the model. The rate at which the 
conductance drops to zero is the abruptness of the fracture. We have plotted conductance with 
applied voltage and observed its behavior at various values of δ.  
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                                  Figure 9: Variation of conductance with applied voltage 

 
Up to δ=0.2 the conductance falls very sharply causing an abrupt fracture in the model. This 
behavior is analogous to sharp brittle fracture. With increasing δ this sharpness decreases. For δ 
≥0.3 the fracture occurs in a co-operative manner like ductile materials. Moreover the constant initial 
value of conductance corresponds to a linear region in current voltage characteristic curve prior to 
fracture. This behavior is like brittle materials. As δ increases the conductance start decreasing from 
this constant value after a certain value δ= δc. Above this δ value current-voltage charecteristics curve 
stars showing non-linearity and behaves like a ductile material.  
 
4. DISCUSSION AND CONCLUSIONS 
 
As an outcome of this paper we can point out some important results : 
1. Variation of conductance in random resistor network and fraction of unbroken bond at critical 
point (nc) in fiber bundle model with δ shows that the behavior of the model in low δ is brittle like 
and that for high δ is ductile like. 
2. The mechanical and electrical response shows a pure linear or a linear behavior with small 
non-linear part before some critical value of δ. Beyond that the model behaves non-linearly like 
ductile materials. For fiber bundle model this critical value is, δc≈0.16667. For random resistor 
network model this critical value δc remains within δ value 0.2 and 0.3. More studies are required to 
locate the exact transition point for random resistor network model. 
3. The critical stress to create fracture in the fiber bundle model decreases to lower values with 
increasing δ’s. This signifies a decrease in hardness of the model when δ is increased. 
At this stage it is difficult to draw some analogy between any exact material property that causes 
ductile-brittle transition and the parameter δ in our model. Still we can suggest a possible parameter 
similar to δ. Early studies in material science prove that ductility in materials is a consequence of 
cooperative motion of defects (mainly dislocation) within it [1]. The material becomes brittle if the 
defects within it are immobile. There are also some external parameter like temperature or pressure 
[4] that control this mobility of defects. Because of this characteristic, materials show ductile-brittle 
transition with respect to these parameters. If we can define any quantity that deals with the 
cooperative motion of the defects in the materials and increases with increasing mobility of defects, 
then that quantity will be analogous to the δ parameter. If it is possible to find some critical value of 
this quantity, depending on the change of external parameters (temperature, pressure or any other 
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parameters), which distinguishes between ductile and brittle region in the materials; then it will be 
similar to δc, the ductile-brittle transition point. 
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