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Abstract  This paper presents a new method to indirectly determine the probability distribution function of 
strength of quasibrittle structures. Based on the finite weakest link model, which relates the probability 
distribution of the structural strength to the size dependence of mean strength, it is shown that that the 
cumulative distribution function of structural strength can be directly determined from the parameters of the 
mean size effect curve. A comprehensive experimental set of tests, which includes both strength histograms 
and mean size effect tests on specimens of asphalt mixture at low temperature, is used to verify the proposed 
method. The predicted strength histograms obtained with this method are found to be in very good agreement 
with the experimental histograms of asphalt mixture specimens of different sizes, confirming the validity of 
the newly proposed formulation. 
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1. Introduction 
 
Most engineering structures, such as buildings, bridges, are designed for a very low failure 
probability (less than 10-6) [1]. Determining the design strength corresponding to such low failure 
probability directly from histogram testing is prohibitive and, therefore, we need to rely on 
probabilistic models for indirectly determining the statistics of structural strength. 
 
Simple statistical models can be used for describing the strength distribution in the case of perfectly 
ductile and brittle structures. For ductile structures, the peak load is equal to the weighted sum of 
random strengths of material elements along the failure surface. Therefore, according to the Central 
Limit Theorem, the cumulative distribution function (cdf) of strength of ductile structures follows 
the Gaussian distribution. On the other hand, the failure of brittle structures is triggered by the 
failure of one material element whose size is negligible compared to the structure size. Based on the 
infinite weakest link model (WLM), the strength cdf of brittle structures follows the Weibull 
distribution [2, 3]. Both Guassian and Weibull distribution are two-parameter probability 
distribution functions for which the statistical parameters can be easily obtained by histogram 
testing involving a limited number of specimens. 
 
This is not true for structure made of quasibritte materials, which are brittle heterogenous materials 
such as concrete and asphalt mixture (at low temperature). For this type of structures the size of 
inhomogenieties is not negligible compared to the structure size. By limiting our focus to 
quasibrittle structures for which the peak load is reached as a macro-crack initiates from one 
representative volume element (RVE) [2-4], it is possible to statistically model this class of 
structures as a finite chain of RVEs [2-4]. Therefore, the cdf of strength of each RVE must be 
known for calculating the strength cdf of the entire structure. Recent studies [3, 4] showed that the 
strength cdf of one RVE can be described by a Weibull distribution grafted on the left tail of a 
Gaussian cdf. At structural level, the finite WLM shows that the strength cdf consists of an upper 
part, which can be calculated as a finite chain of Gaussian elements, and a lower segment that 
follows the Weibull distribution [2-4] resulting into an intricate size effect on the mean structural 
strength. Determining such a type of strength distribution through histogram testing requires a large 
number of specimens, which could be very costly and time consuming, due to material and labor. 
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This paper presents an alternative method to determine the strength cdf of quasibrittle structures, 
which is anchored at the analysis of the mean size effect curve. The proposed method is 
experimentally verified by a comprehensive set of tests on the asphalt mixture at a low temperature. 
 
2. Theoretical background 
 
The weakest link model schematizes a structure as finite chain of RVEs. Based on the joint 
probability theorem, which provides a mathematical expression of the WLM, the failure probability 
of the entire structure, Pf, made of N RVEs can be obtained according to Eq. 1: 

 Pf (σ N ) =1− 1−P1(siσ N )[ ]
i=1

N

∏  (1) 

where P1 is the cdf of strength of one RVE having characteristic size l0, σN = cPmax/bD is the 
nominal strength of the structure, Pmax is the maximum load that the structure can sustain, D is the 
structure characteristic size, b is the width of the structure, c is a constant such that σN represents the 
maximum elastic principal stress in the structure and si dimensionless stress field such that σNsi 
corresponds to the maximum elastic principal stress at the center of ith RVE. Based on atomistic 
fracture mechanics and a statistical multi-scale transition model [3,4] it was recently demonstrated 
that the failure cdf of one RVE can be approximated by a Weibull cdf grafted on the left tail of a 
Gaussian cdf (core) at a point with a probability of about 10-4—10-2. The grafted cdf of strength of 
one RVE can be expressed as [2-4]: 
 P1(σ ) =1− exp[−(σ / s0 )
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where σ is the maximum elastic principal stress at the center of the RVE, m is the Weibull modulus, 
s0 is scale parameter of the Weibull tail,  〈x〉  = max(x, 0), µG and δG are the mean and the 
standard deviation of the Gaussian core. Pgr is the grafting probability between the Gaussian and the 
Weibull parts of the distribution, σgr is the grafting stress and rf is a scaling factor ensuring that 
Weibull-Gaussian grafted cdf is normalized: P1(σ→∞) = 1. Six statistical parameters, µG, δG m, s0, rf 
and σgr are used to describe the failure distribution of one material RVE; however, due to 
normalization and continuity conditions, only four of these parameters are independent, and suffice 
to define P1(σ). 
 
The strength distribution of the entire structure can be calculated by mean of the WLM together 
with Eqs. (2a) and (2b). The mean structural strength for structures of different sizes can be 
obtained according Eq. 3: 
 σ N = σ Nd0

1
∫ Pf = [1-

0

∞

∫ Pf (σ N )]dσ N  (3) 
However, a closed form does not exist for Eq. 3, and, therefore, a numerical solution is needed to 
determine the effect of structure size, D, on the mean strength for geometrically similar specimens. 
Based on asymptotic matching, Bažant and co-workers [2, 5] proposed an approximate expression 
for the size dependence of the mean strength: 
 σ N = C1 /D+ C2 /D( )rn/m!

"
#
$
1/r

 (4) 

where m is the Weibull modulus, n is the number of dimensions to be scaled (n = 1, 2 and 3). C1, C2, 
and r can be determined using the following asymptotic conditions for small and large-size limits: 
[σ N ]D→lm

, [dσ N / dD]D→lm
 and [σ N /D

n/m ]D→∞ , where lm represents the small size limit of the 
structure. 
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3. Relation between mean size effect curve and strength distribution of one RVE 
 
In this section a method to relate the statistical parameters, µG, δG m, s0, of P1(σ) to the properties of 
the size effect curve of mean structural strength is proposed as an alternative to calibration through 
histogram testing. The mean size effect (Eq. 4) is determined by five parameters: n, m, r, C1 and C2. 
The scaling dimension, n, is known a priori, while m is the Weibull modulus, which is also one of 
the four statistical parameters of P1(σ). Therefore, the remaining three parameters µG, δG and s0, 
must be determined from the three statistical parameters r, C1 and C2. 
 
Since rn/m << 1, the large-size limit of Eq. 4 can be rewritten as σ N = (C2 /D)

n/m . In such a case the 
RVE size becomes negligible compared to the structure size. Therefore, the classical extreme value 
statistics can be applied. Since the strength cdf has a power-law tail, the resulting strength cdf of the 
entire structure must follow the Weibull distribution [2, 3, 6, 7]. Therefore, the mean strength of 
very large structures can be calculated as [2-4, 8]: 
 σ N = s0Γ 1+1/m( ) D0 /D( )n/m  (5) 

where D0 = l0 s(ξ ) m dV (ξ )
V∫

"
#

$
%
−1/m

, ξ = x /D  is the normalized coordinate, and )(xΓ is the 

Eulerian gamma function. By equating Eq. 5 with the large size expression of Eq. 4, it is possibile 
obtaining the Weibull scaling parameter s0 in terms of the parameter C2: 
 s0 = C2 /D0( )n/m Γ−1 1+1/m( )  (6) 
 
In order to use Eq. 6, the RVE size l0 must be known a priori. Based on a recent study [2] the RVE 
size can be estimated as 2 times of size of the material inhomogeneities, which can be determined 
through digital image analysis [9] or from the aggregates gradation curve as was done in this study. 
At the small size limit two asymptotic conditions can be written for relating µG and δG to r and C1: 
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where Nm is the number of RVEs in the structure at the small-size limit and lm is the smallest 
specimen size which makes physical sense. Recent studies showed that for beams under three-point 
bending, which is commonly used in the laboratory testing, the minimum depth of the beam for the 
WLM to be valid is about 4 RVEs [10]. By using the logarithm of the WLM (Eq. 1) and integrating 
over the entire structure, the left hand side of Eq 8 can be rewritten as: 

 −
dPf
dD0

∞

∫ dσ N =
n
D

 [1−P1(siσ N )]
i=1

Nm

∏  ln
i=1

Nm

∑0

∞

∫ [1−P1(siσ N )]dσ N  (9) 

 
At the small size limit, Nm is usually small (i.e. 4 RVEs) and, therefore, it is expected that the 
Weibull tail of the strength cdf is very short. Hence, the cdf of strength can be entirely 
approximated by the Gaussian core; P1(σ) can be replaced by a Gaussian distribution, which has a 
mean µG and standard deviation δG. Eqs. 7 and 8 can then be reformulated as: 
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where ΦG (siσ N ,µG,δG ) = (2π )
−1/2 exp[−(x −µG )

2 / 2δG
2 ]dx

−∞

siσ N∫ . 
 
By solving the system of Eqs. 10 and 11, together with Eq. 6 and the Weibull modulus m, it is 
possible to determine the four parameters of the strength cdf of one RVE (µG, δG m, s0) from the 
mean size effect curve. This permits us to calculate the strength distribution of structures of any size 
and geometry through the WLM. 
 
4. Material and testing 
 
A comprehensive set of experiments, including both mean strength tests on asphalt mixture 
specimens of different sizes and strength histogram testing at a low temperature, was used to verify 
the proposed method for indirectly determining the strength distribution from the mean strength 
curve. The asphalt mixture used for the experimental phase was prepared with a blend of aggregates, 
consisting of taconite aggregates (55% of MIN TAC tailings and 10% of ISPAT tailings) and pit 
sand (35%), and a PG 64-34 asphalt binder (7.4% by weight) [11]. The nominal maximum 
aggregate size was 4.75mm. Based on the sieve size analysis, the dimension of the asphalt mixture 
RVE was estimated to be twice the size of the material inhomogeneities, which for asphalt mixture 
corresponds to the average aggregate size. For the particular asphalt mixture considered in this 
study, we estimated an average aggregate size to be 1.22 mm and an RVE volume V0 to be 14.4 
mm3. 
 
Since the objective of this study is to derive the strength distribution from the mean size effect curve, 
a large size range is needed. Therefore, size effect tests were performed by using three-point bend 
(3PB) beams (Fig. 1).  
 

 1 

 2 
 3 

DT prism (D) 

3PB beam (C) 

3PB beam (B) 

3PB beam (A) 
 

Figure 1. Beam specimens 
 
Nevertheless, the sizes of the climatic chamber and of the testing machine limited the size of the 
beam specimens. Therefore, an alternative type of test was required to achieve a sufficiently large 
range of sizes to fully verify the ductile-to-brittle transition of material behavior as structure size 
increases. For this reason, mean strength tests were also conducted on prismatic specimens in direct 
tension (DT) configuration. Such an approach was selected because by varying test type and 
geometry both stress field and failure probability change. Therefore, given the same mean strength, 
it is possible to convert the dimensions of a structure for a specific stress field and geometry into a 
different structure with different stress field and geometry [2]. Since Weibull distribution governs 
the cdf of very large structures, the size of the DT specimen was set as the largest possible. This 
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ensures that the DT specimen consists of a large number of RVEs and thus the classical Weibull 
statistics can directly be used to calculate the size of the equivalent three-point bend beam. 
 
Specimens were obtained from twenty-six slabs of asphalt mixture (size 380mm by 200mm) 
compacted at target air voids of 7% by mean of a Linear Kneading Compactor (LKC). Asphalt 
mixture beams for 3PB tests present thickness to span ratio equal to 1 : 6 and size ratio 1 : 3 : 3; 
since 2D scaling was used for beams, a constant width b = 40 mm was selected. The forth specimen 
type used for DT tests was prepared by cutting one-size asphalt mixture prisms. Table 1 presents 
detailed information on the specimens used. The thickness of the beams, D, and the width of the 
prism were assumed as characteristic dimensions for the three-point bend and DT specimens, 
respectively (Figure 2a and 2b). The dimensions of the specimens were chosen based on the 
dimensions of the compacted slabs and on the limitation imposed by the climatic chamber and 
loading frame. 
 

Table 1. Specimen details and mean strength results 
Specimen 

ID 
Replicates 

# 
Dimensions 
(L x D x b) 

Test 
Type 

Mean/Histogram 
 

Mean Strength Nσ (MPa)  

A 12 100 x 16.7x 40 mm 3PB Mean 14.3 
B 28 173 x 28.9 x 40 mm 3PB Histogram 12.4 
C 30 300 x 50 x 40 mm 3PB Histogram 11.4 
D 7 255 x 55 x 55 mm DT Mean 8.2 
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L=255m
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D=55mm 

Specimen 

(b) (a) 

 
Figure 2. Schematics of (a) three-point bend test and (b) direct-tension test 

 
Testing temperature was set to T=-24°C (low PG+10°C), which is close to the glass transition 
temperature of the asphalt mixture used. Together with very short tests duration this reduces the 
viscoelastic effect of the binder component. The desired testing temperature was achieved through a 
controlled flow of nitrogen inside the climatic chamber of the MTS device used for testing; a 
conditioning time of three hours was imposed to all the type of specimens before testing. 
 
DT tests were performed by gluing the specimens to a set of plates with an epoxy compound, and 
then attached to loading frame through a set of screws. Since only the peak load is of interest for 
this study, both 3PB and DT tests were conducted in load-control mode. In order to minimize the 
loading rate effect and achieve a similar loading rate of the fracture process zone (FPZ), a time to 
failure of about 5 minutes was set for all the specimens. Consequently, different loading rates were 
set for each specimen type; for this reason, a rate calibration was initially performed by testing four 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-6- 
 

to six additional specimens at each testing condition. 
 
5. Size effect analysis 
 
The nominal strength of three-point bend B

Nσ and direct tension T
Nσ  were calculated as 

2
max 2/)3( bDLPB

N =σ  and bDPT
N /max=σ , where Pmax is the peak load, L is the length of the beam, 

D is the scaling dimension (the thickness of the beam or the width of the DT prism) and b is the 
depth of the beam for three-point bend (40mm) or the depth of the prism (55mm) for DT specimens. 
Table 1 presents the mean nominal strength for all the specimens and the number of replicates used.  
In order to calculate the probability distribution of nominal strength of beam series B and C (Table 
1), the strength values were ranked in an ascending order, i = 1, ...,N, where i is the rank and N is 
the total number of test specimens, and the strength cdf was next calculated according to the 
midpoint position method [12] as Pf (σ N

B ) = (1− 0.5) / N . The resulting strength histogram is shown in 
Fig. 3 on the Weibull scale. 
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Figure 3. Experimental strength histograms and WLM predictions 

 
The experimental strength histogram presents a trend which is common to many other quasibrittle 
materials such as concrete and engineering ceramics [13, 14], and is composed of two segments 
separated by a kink point: the lower segment follows a straight line (i.e. a Weibull distribution) 
while the upper portion is curved, according to the finite WLM. The experimental histograms 
indicate that the strength distribution strongly depends on the structure size: as the size increases, 
the Weibull portion becomes more and more dominant. The Weibull modulus, m, of the lower part 
of the two histograms can be obtained by fitting; this value is identical and equal to 26, which 
implies that the Weibull modulus does not vary with the structure size. 
 
The mean strength of DT specimens needs to be converted into the corresponding equivalent 3PB 
beam to be next used for plotting the mean strength size effect curve. The DT specimen used in this 
investigation has a volume of 756,000 mm3 (Table 1), which consists of almost 5.25·104 RVEs 
(V0=14.4 mm3). Such a large number of RVEs ensures that the failure cdf of DT specimens is fully 
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governed by the Weibull distribution, and, therefore, by the two parameters m and s0. The mean 
strength of DT specimens, T

Nσ , and the mean strength of the equivalent 3PB beams, B
Nσ , can be 

written as: 
 σ N

T = NT
−1/ms0Γ 1+1/m( )  and σ N

B = Neq,B
−1/ms0Γ 1+1/m( )  (12) 

where NT is the number of RVEs in the direct tension specimen and the equivalent number of RVEs 
in the 3PB beam is obtained as: Neq,B =

b
l0
3 [(σ (x) /σ N

B )]m dV (x)
V∫ , where V is the volume of the beam. 

The equivalent characteristic size, Deq (thickness), of the three-point bend beam, which has a 
nominal strength equal to T

Nσ , is obtained by equating Eqs. 12: 

 Deq = [(m+1)2NTV0 ] / (3b) = 2143mm (13) 
Therefore, by simply selecting a different loading mode it is possible to achieve significantly 
different equivalent structure sizes, which allows obtaining size effect curve for a much wider size 
range. At the same time, based on the measured mean strength of DT specimens, and by using Eq. 
12 for DT, we can directly estimate the value of the Weibull scaling parameter s0 = 12.68 MPa. For 
beam specimens with 2D scaling (i.e. n = 2), we can consider that the damage is throughout the 
entire beam thickness. Therefore, the effective size of the RVE can be obtained as 
l0 = V0 / b = 0.6mm; based on this condition and on Eq. 6, the following value of C2 can be 

calculated:C2 = (m+1) / 3 ⋅ l0s0
m/2 Γ 1+1/m( )#$ %&

m/2
=1.55 ⋅1015 .  

 
Fig. 4 shows the mean size effect curve of structural strength for 3PB beams and DT specimens 
(with their equivalent 3PB size). The experimental mean strength curve presents a pattern that is 
typical to that observed in other quasibrittle structures such as concrete beams [5, 15]. 
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Figure 4. Mean strength curve 

 
However, it is clear that the four mean strength data points obtained experimentally are not 
sufficient to determine the large-size asymptote of the size effect curve. For this reason, the Weibull 
modulus, m, was determined from the lower portion of the strength histogram as shown earlier in 
this paper. Therefore, C2 was calculated from the DT specimen Weibullian mean. If we tested DT 
specimens of two different sizes, m could be calculated easily by fitting the linear portion of the 
mean strength curve at the large size limit and, hence, obtain s0 directly from Eq. 6. 
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Parameters C1 and r in Eq. 4 can be finally determined by non-linear fitting of the experimental 
mean strength data: the following values were obtained: C1 = 49.49 and r = 1.01 which agrees well 
with the analytically derived size effect on the modulus of rupture of three-point bend beams [16]. 
By knowing C1 and r, and solving Eqs. 10 and 11, it is possible to obtain the remaining two 
parameters of the Gaussian core, µG, δG, of the of the RVE strength cdf. Since for this computation 
we are interested to the small size limit, the smallest beam size which can be used has a 
characteristic size D = 4l0 (Fig. 5). According to the elastic stress field two layer of RVE are 
subjected to tensile stress. The stress at the center of the RVEs upper-layer is half of the stress at the 
center of the RVEs bottom-layer. Moreover, along the beam span there is a significant decay of 
stress moving away from the two central RVEs, “C”, of 9.5% and 26% for RVEs “L” and “A”, 
respectively. Given the large value of the Weibull modulus, it is reasonable to only include the 
bottom-layer RVEs “C” and “L” for the calculation of µG, δG. 
 

 

 

 

 

 

 

 

  

 

P 

D=4l0 
C C A A L L 

L=6D=24l0  
Figure 5. Small size limit beam 

 
Therefore, Eqs. 10 and 11 can be rewritten as: 
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where s1 = 0.718, and s2 = 0.656. The system of Eqs. 14 and 15 can be numerically solved, yielding 
µG = 45.24 MPa and δG = 14.82 MPa, which, can be easily demonstrated, are the only couple of 
values satisfying Eqs. 14 and 15.  
 
With knowing µG, δG m and s0 the strength distribution of one RVE (Eqs. 2a and 2b) can be 
evaluated. With the finite WLM (Eq. 1), it is possible predicting the strength cdf of beams series B 
and C. Fig. 3 shows that the predicted strength cdf matches very well the measured strength 
histograms for both beam sizes. This indicates the statistical parameters of strength cdf can be 
calibrated from the mean size effect curve. By using the WLM we can further calculate the strength 
distribution and the mean strength of beams with other different sizes; Fig. 4 indicates that the mean 
structural strength predicted from the WLM lies on the size effect curve represented by Eq. 4, 
supporting the validity of this expression in providing a good approximation of the exact size effect 
curve calculated from the finite WLM. 
 
In previous studies [2-4] it was shown that the finite WLM could correctly describe the deviation of 
the strength histogram of quasibrittle structures of a single size from the two-parameter Weibull 
distribution. Based on the strength histograms of structures of two sizes, this study provides a 
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further validation of the finite WLM; by properly selecting specimen sizes and number of replicates 
the size effect on the grafted strength distribution was clearly demonstrated (Fig. 3). The good 
agreement between the predicted and measured strength distributions of beams of two sizes 
indicates that the recently proposed finite WLM can well capture the size effect on the strength cdf 
of quasibrittle structures. 
 
6. Conclusions 
 
In this paper an analytical and experimental demonstration on the possibility of indirectly 
determining the strength cdf of quasibrittle from the mean size effect curve was presented. This 
method provides a valid alternative to the conventional histogram testing, it requires a smaller 
number of specimens, and it is less prone to experimental errors. The size effect tests on the 
strength histogram of asphalt mixture indicates that the probability distribution of structural strength 
strongly depends on the structure size, and such dependence can be well explained by the finite 
weakest link model. 
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