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Abstract  Experimental investigations on superelastic shape memory alloy (SMA) wires subjected to 
isothermal stress cycling show significant performance degradations, including the accumulation of the 
plastic strain, the reduction of the maximum transformation strain and the evolution of the transformation 
temperatures. The cyclic degradation of SMAs must be carefully studied and understood when the alloys are 
used in the SMA based actuators and vibration isolators. Motivated by these issues, the present work aims to 
develop a comprehensive approach for the cyclic behavior of SMAs taking into account degradations caused 
by isothermal stress cycling in the superelastic regime. The new cyclic constitutive model is constructed 
based on the thermodynamic frame proposed by Boyd and Lagoudas, and evolution laws for the plastic strain 
as well as non-constant material parameters including the maximum transformation strain and four 
transformation temperatures are also constructed. Finally, numerical simulations based on the proposed 
constitutive model are also performed in our work, and good correlations are observed. 
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1. Introduction 
 
Shape memory alloys (SMAs) exhibit many special properties due to their thermo-elastic martensite 
transformation, such as shape memory effect, superelasticity (or pseudoelasticity) and damping [1]. 
Among these thermal-mechanical behaviors, superelasticity is particularly interesting. Superelastic 
behavior is revealed when the SMA material is mechanically loading under a surrounding 
temperature higher than the austenite finish temperature. After unloading, SMA material can recover 
its initial shape and the stress–strain response shows a typical hysteretic loop. This unique 
superelasticity promotes SMAs to be used in medical applications, such as arterial stents, medical 
guidewires and catheters [2]. Also, the typical hysteretic loop in the stress–strain space reveals that 
SMA is a kind of energy dissipation material. Taken the advantage of this property, SMAs are also 
used in vibration isolation applications, such as seismic isolation and mechanical vibration 
isolation. 
 
Motivated by these applications, many constitutive models were developed to simulate the 
thermal-mechanical behavior of SMAs in the superelastic regime over the last thirty years [3-10]. 
However, among these investigations, very few studies consider the performance degradation of 
SMAs under isothermal stress cycling, which is more pertinent when SMAs are used in vibration 
isolation applications [11-15]. Until recently, Kan and Kang introduced the cumulated martensite 
volume fraction as an internal variable to account for the evolution of residual induced martensite 
and transformation induced plastic strain during stress-controlled cyclic loading [16]. Zaki and 
Moumni used internal stress, residual strain and cumulated martensite volume fraction as internal 
variables to simulate the behavior of SMA in the case of cyclic superelasticity [17]. Saint-Sulpice et 
al. introduced the residual martensite volume fraction to account for the evolution of residual strain 
and transformation surface during isothermal stress cyclic loading [18].  
 
The aforementioned models usually consider the plastic strain accumulation and/or the 
transformation surface evolution (which is associated with the evolution of maximum 
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transformation strain). However, the transformation temperatures of the alloy were demonstrated to 
change as a function of the thermal/stress cycling number [19-21]. Moreover, the evolution of 
transformation temperatures can significantly affect the critical stresses for the onset and finish of 
phase transformations and the area of the stress–strain hysteretic loop.  
 
Therefore, this paper aims to develop a constitutive model for SMAs taking into account the 
isothermal stress cycling degradation, including the accumulation of plastic strain, the evolution of 
the maximum transformation strain and four transformation temperatures. The new constitutive 
model is constructed based on the thermodynamic frame proposed by Boyd and Lagoudas [22, 23]. 
The organization of the paper is as follows: Section 2 presents the observation of cyclic degradation 
in SMAs through the isothermal stress cycling experiment. The 1-D constitutive model considering 
the cyclic evolution of the plastic strain, the maximum transformation strain and transformation 
temperatures is presented in Section 3, while in Section 4, numerical examples are presented and 
discussed. The conclusions and future work are summarized in the final section. 
 
To simplify the presentation, we denote the two phases related with superelasticity by A and Md for 
austenite and detwinned martensite, respectively. The forward and reverse phase transformations are 
denoted by A Md and Md A for austenite to detwinned martensite and detwinned martensite to 
austenite, respectively. 
 
2. Observation of cyclic degradation 
 
We performed an isothermal stress cycling experiment to a NiTi wire, the wire was repeatedly 
stressed up to 900 MPa under 28 oC. The stress−strain response of the wire is shown in Fig. 1, a 
simplified diagram which features the evolution of plastic strain, maximum transformation strain and 
transformation temperatures is shown in Fig. 3, and typical features of cyclic degradation are outlined 
as follows:  
 
1) The isothermal stress cycling of the NiTi alloy presents an apparent cyclic accumulation of the 
plastic strain. As shown in Fig. 3(a), after the first cycle, the NiTi wire cannot recover to its original 
length, and a plastic strain, donated as εp1, is produced. Similarly, after the second cycle, the total 
cumulated plastic strain is εp2, and after the nth cycle, the accumulation of the plastic strain becomes 
εpn. Furthermore, the plastic strain evolves as an exponential function of cycle number before 
stabilizing, as shown in Fig. 1 and Fig. 2. 
 

   
Figure 1. Experimental results of isothermal stress cyclic loading on NiTi wire 
Figure 2. Evolution of the maximum transformation strain ε max and plastic strain ε p during cyclic loading, 
the experimental results are compared with the exponential fitting results 
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2) The maximum transformation strain (also referred to as the saturation recovery strain) changes 
from cycle to cycle. As shown in Fig. 3(a), the maximum transformation strain for cycle 1 is ε  

max1, 
while for cycle 2, it reduces to ε  

max2. Similarly, after the nth cycle, the maximum transformation strain 
will reduce to ε  

maxn. Also, as shown in Fig. 2, ε  
max is found to increase exponentially with respect to the 

cycle number up to an asymptotic value. 
 
3) The four transformation temperatures change as a function of the cycle number. As shown in Fig. 3 
(b), during the first cycle, the four transformation temperatures are Ms1, Mf1, As1 and Af1, respectively. 
While in the second cycle, the four temperatures change to Ms2, Mf2, As2 and Af2. So we can deduce 
that the four temperatures will change as the cycle number increases. The same phenomenon was 
reported in literatures [19-21]. 
 

  
(a) strain evolution         (b) transformation temperatures evolution  

Figure 3. The evolution of (a): plastic strain, maximum transformation strain in the stress–strain space and (b): 
transformation temperatures in the stress−temperature space under isothermal stress cycling. For clarity, the 
evolution of austenite start and finish transformation temperatures is not shown in the stress−temperature 
space 
 

 
Figure 4. Schematic explanation for the evolution of plastic strain 

 
In order to investigate when the evolution of plastic strain occurs during the whole transformation 
process, the stress vs. strain response of a typical cycle is presented in Fig. 4. We assume that the 
plastic and transformation strains produced in A Md (corresponding loading path is ABC) are 
separately εp 

ABC and ε 
t, and the elastic strain of point C is ε 

el. Following these assumptions, the total 
strain of point C (shown in Fig. 4) becomes: 

el p t
C ABCε ε ε ε= + +                               (1) 

 
Assume that the plastic strain for Md A (corresponding loading path is CDEF) is εp 

CDF. Therefore 
the plastic strain cumulated during the forward and reverse transformations (corresponding loading 
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path is ACF) is εp 
ABC+εp 

CDF. Since the transformation strain can be fully recovered after the Md A 
transformation, the reduction of the transformation strain during Md A is ε t (corresponding 
loading path is CDEF, as shown in Fig. 4). Consequently, the total strain of point C can be 
expressed as: 

el p p t
D ABC CDFε ε ε ε ε= + + +                                (2) 

 
From Eqs. (1) and (2), we can deduce that εp 

CDF=0. Following the derivation above, we can assume 
that the accumulation of plastic strain ε p only occurs during A Md. 
 
Consequently, to model the cyclic degradation of shape memory alloys under isothermal stress 
cycling, the evolution of the plastic strain and maximum transformation strain in A Md and the 
evolution of transformation temperatures in both forward and reverse transformations must be 
considered, also related evolution laws should be established. 
 
3. Constitutive model 
 
A constitutive model taking into account the cyclic degradation due to isothermal stress cycling is 
proposed. It is constructed in the generalized plasticity framework which was employed by Boyd and 
Lagoudas [22, 23] to simulate the thermo-mechanical behavior of SMA. The construction of the 
constitutive model is stated in details as follows. 
 
3.1. Strain decomposing and internal variables  
 
3.1.1. Strain decomposing 
 
With the infinitesimal strain assumption, the total strain ε is decomposed into an elastic strain ε el and 
an inelastic strain ε in: 

e inε ε ε= +                                 (3) 
 
In which, the inelastic strain ε in can be further decomposed into a thermal expansion strain ε th, a 
transformation strain ε t, and a plastic strain ε p: 

in th t pε ε ε ε= + +                              (4) 
 
The thermal expansion strain ε th is neglected because the value is much smaller than the others, so the 
following expression can be got: 

el t pε ε ε ε= + +                                  (5) 
 
3.1.2. Internal variables definition 
 
As shown in Eq. (5), two internal variables are needed to account for the evolution of the 
transformation strain ε t and the plastic strain ε p. Generally, the martensite volume fraction ξ is used 
as an internal variable to related with ε t [24]: 

t
maxε ε ξ=                                  (6)  

 
Where ε max is the maximum transformation strain. Following the observation of cyclic degradation 
stated in Section 2, the plastic strain ε p and the maximum transformation strain ε max change as a 
function of the cycle number. In order to account for these evolution processes, the cumulated 
martensite volume fraction ξ c is defined: 
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c ac mcξ ξ ξ= +                                 (7) 
 
Where ξ ac and ξ mc represent the cumulated martensite volume fractions in A Md and Md A, 
respectively. Following these definitions, ξ ac and ξ mc can be expressed as follows: 

d dac A M mc M A, dt dtξ ξ ξ ξ→ →= =∫ ∫& &                      (8) 

 
In which, t is a kinematic time. 

dA Mξ →&  and 
dM Aξ →&

 denote the martensite production rate during 
A Md and Md A. 
3.2. Free energy and transformation hardening function 
 
The total Helmoltz free energy ψ for polycrystalline SMAs is given based on Boyd and Lagoudas’s 
work: 

( ) ( ) ( )2t p
0 0 0 02 ln ( , )E c T T T T T u T fψ ε ε ε ρ η ξ ξ= − − + − − + − +⎡ ⎤⎣ ⎦

&      (9) 

 
Where E, c, ρ, η0 and u0 are the Young modulus, effective specific heat, mass density, effective 
specific entropy, and effective specific internal energy at the reference state, respectively. The 
symbols T and T0 denote the temperature and reference temperature, respectively. The terms 
E(ε−ε t− ε p)2/2ρ, c[(T−Τ0)−Τ ln(T/T0)] and u0−η0Τ+ ( , )f ξ ξ&  represent the elastic strain energy, 
thermal energy, and the energy related to transformations, respectively.  
 
The effective specific heat c hardly varies during phase transformations, so it is assumed to be 
constant. However, other material properties in Eq. (9) are assumed to vary with the martensite 
volume fraction as: 

( ) ( )A M A AE E E E E Eξ ξ ξ= + − = + Δ                    (10) 

( ) ( )A M A A
0 0 0 0 0 0η ξ η ξ η η η ξ η= + − = + Δ                   (11) 

( ) ( )A M A A
0 0 0 0 0 0u u u u u uξ ξ ξ= + − = + Δ                   (12) 

 
Where the superscripts A and M represent the austenite and martensite phases, respectively. The 
symbol Δ denotes the difference of the corresponding material parameter between the martensite and 
austenite phases. 
 
In particular, the term ( , )f ξ ξ& is the transformation hardening function which is used to account for 
the interactions between the austenite phase and the martensite phase. In this work, a nonlinear 
transformation hardening model is established: 

( ) ( ){ } ( )42 1 2
( , ) 1 sgn 1 sgn

2 2 4
f a b

ξξ ξξ ξ ξ ξ
⎡ ⎤−⎛ ⎞⎡ ⎤ ⎡ ⎤= − + + + +⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦

& & &               (13) 

 
Where a and b are constitutive model parameters for transformation hardening and they are related to 

material constants. The function sgn(·) is a signum function of a real number m, it is defined as follow: 

1 if  0
sgn( ) 0   if  0

1 if  0

m
m m

m

>⎧⎪= =⎨
− <⎪⎩

                              (14) 
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3.3. Thermodynamic force and constitutive relation 
 
Following the formalism of Truesdell and Noll [25], the Helmoltz free energy ψ and the internal 
energy u are substituted into the first and second law of thermodynamics to derive thermodynamic 
constraints on the state of the system resulting in the following constitutive relation: 

( )t pEψσ ρ ε ε ε
ε

∂
= = − −

∂
                           (15) 

 
Similarly, thermodynamic force X, which is conjugate to the martensite volume fraction ξ , is given: 

( ) ( )
t2t p

0 0
1
2

d dfX E u T
d d

ψ ερ ε ε ε σ ρ η
ξ ξ ξ

⎡ ⎤∂
= − = − Δ − − − + Δ − Δ +⎢ ⎥∂ ⎣ ⎦

    (16) 

 
As assumed in Section 2, the accumulation of plastic strain ε p and the reduction of maximum 
transformation strain εt 

max only occur during A Md. Therefore, the thermodynamic force Q, which 
accounts for the evolution of ε p and εt 

max, is conjugate to the cumulated martensite volume fraction 
ξ ac. Similar to thermodynamic force X, it can be expressed as: 

p t

ac ac ac

d dQ
d d

ψ ε ερ ρ
ξ ξ ξ

⎛ ⎞∂
= − = +⎜ ⎟∂ ⎝ ⎠

                          (17) 

 
3.4. Transformation functions and Kuhn-Tucker inequalities 
 
Borrowed from yield functions in the classical theory of plasticity, transformation functions 
associated with A Md and Md A are defined as:  

F X Q R+ += + −     when 0ξ >&    For the phase transformation: A Md            (18) 
F X Q R− −= − + −   when 0ξ <&   For the phase transformation: Md A          (19) 

 
Where the constitutive model parameters R+ and R− are the radius of the respective transformation 
domains. 
 
Constraints on the evolution of the martensite volume fraction for the forward and reverse phase 
transformations are expressed in terms of the Kuhn-Tucker inequalities: 

d

d
0   0   0   For the phase transformation: A M
0   0   0   For the phase transformation: M A   

F F
F F

ξ ξ
ξ ξ

+ +

− −
⎧ ≥ ≤ = →
⎨ ≥ ≤ = →⎩

& &
& &          (20) 

 
3.5. Evolution laws 
 
Following Eq. (6), the evolution law for the transformation strain ε t can be got:  

t
maxε ε ξ= &&                                 (21) 

 
It is concluded from the experimental results that the material parameter: maximum transformation 
strain ε max, varies as an exponential function of the cycle number, as shown in Fig. 2. Furthermore, as 
explained in Section 3.1.2, ε max is assumed to vary only in A Md, which implies that ε max changes 
as an exponential function of ξ ac. Therefore, from a theoretical point of view, a non-constant 
material parameter ε max can be defined using the evolution law: 
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act 6 ac
max max6 mm e ξε ε ξ−= &&                             (22) 

 
Analogous to ε max, evolution laws of ε p 

max and four material parameters: Ms, Mf, As and Af are given: 
acp p 5 ac

max5 mm e ξε ε ξ−= &&                             (23) 

( )c 1
s s0 smax 1 mM M M e ξ−= − −                         (24) 

( )c 2
f f0 f max 1 mM M M e ξ−= − −                         (25) 

( )c 3
s s0 smax 1 mA A A e ξ−= − −                           (26) 

( )c 4
f f 0 f max 1 mA A A e ξ−= − −                           (27) 

 
Where ε t 

max , ε p 
max, Mfmax, Msmax, Afmax and Asmax  denote saturation values of ε max, ε p, Mf, Ms, Af and As 

due to cyclic loading, which can be got through isothermal stress cycling experiments. The variables 
m1~m6 can be obtained from the experimental curves by nonlinear fitting method. 
 
So far, the constitutive model of SMAs taking into account the function degradation caused by 
isothermal stress cyclic loading has been fully established. In the following section, numerical 
simulations will be performed to verify the proposed model. 
 
4. Simulated results and discussions 
 
To show the model’s capability of simulating the macroscopic behaviour of SMA material under 
isothermal stress cycling, we performed a cyclic tensile test at 5.5% strain amplitude under 27.5 oC 
for a SMA wire. Fig. 5 illustrates cyclic stress vs. strain response of the SMA wire for 10 cycles. 
Numerical simulations are obtained using the constitutive model proposed in this work, and the 
related material parameters are shown in Table 1. The simulated cyclic stress vs. strain response is 
shown in Fig. 6. From Fig. 5 and Fig. 6, it may be noticed that the model is able to simulate correctly 
the main characteristics of the isothermal stress cyclic response of a SMA wire. In particular, the 
stress vs. strain curves for the 1st, 4th and 10th cycles are shown in Fig. 7 and good agreements 
between experimental and simulated results are observed. 
 

Table 1. Material parameters used in the constitutive model. 
General material parameters Values Cyclic material parameters Values 

EA 42200 MPa Msmax 21 K 
EM 23500 MPa Mfmax 1.5 K 
Δη0 − 17.77 J /(kg·K) Asmax 0 K 
Δu0 − 20 J /kg Afmax 0 K 

c 4×106 J /(kg·K) ε t 
max 0.0121 

ρ 6.5×10-9 kg/m3 ε p 
max 0.0141 

As(0) 274K m1 0.14 
Af(0) 300 K m2 0.98 
Ms(0) 270 K m3 0.081 
Mf(0) 232 K m4 0.05 

CA 9.4 MPa/K m5 0.271 
CM 6.7 MPa/K m6 0.23 

ε 
max(0) 0.0348   

 
In order to further investigate the ability of the model to predict the evolution of ε 

max, ε p  and four 
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transformation temperatures, the corresponding experimental results are compared with simulated 
results, as shown in Figs. 8 and 9. It can be seen from these figures that for the evolution of ε 

max, ε p, 
Ms, Mf and Α f, the experimental and simulated results are close to each other. However, for the 
evolution of As, a certain disagreement occurs, which can perhaps be explained that As indeed does 
not evolve exponentially with respect to the cycle number. 

 

   
Figure 5. Experimental results of the SMA wire. Isothermal stress cycling at 5.5% strain amplitude under 

27.5 oC for 10 cycles. 
Figure 6. Simulated cyclic stress vs. strain curves for 10 cycles using the proposed constitutive model. 

 

 
Figure 7. Simulation vs. isothermal stress cyclic loading experimental results for cycle 1, cycle 4 and cycle 10. 
Figure8. A comparison of the evolution of plastic strain (ε p) and maximum transformation strain (ε 

max) 
between experimental results and model simulations. 
 

   
(a)                                    (b) 

 

Figure 9. A comparison of evolution of four transformation temperatures between experimental results and 
model simulations: (a) Ms and Mf and (b) Α s and Α f. 
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5. Conclusions and future work  
 
A new 1-D phenomenological model of SMA taking into account the evolution of the plastic strain, 
maximum transformation strain and transformation temperatures during isothermal stress cycling 
was introduced in this paper. Since different phase transformation has different influence in the cyclic 
behaviour, the cumulated martensite volume fraction ξ c  was decomposed into ξ ac and ξ mc to 
account for cyclic effects during corresponding transformation processes. Non-constant material 
parameters including maximum transformation strain and four transformation temperatures are used. 
Evolution laws for the non-constant material parameters and plastic strain were established to depict 
the evolution of maximum transformation strain, transformation temperatures and plastic strain 
under cyclic loading. Experimental verifications were given and the results showed that the model 
was able to quantitatively capture the effect of isothermal stress cyclic loading. However, the model 
cannot simulate the evolution of As correctly, which maybe attribute to that As actually evolves with 
a non-experimental function. As a result, future work will introduce a new evolution law for As based 
on experimental studies. 
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