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Abstract  The dynamic response of an interface crack between magnetoelectroelastic and functionally 
graded elastic layers under anti-plane shear and in-plane electric and magnetic impacts is investigated by the 
integral transform method. The mixed boundary value problem of the interface crack is reduced to dual 
integral equations, which can be further expressed in terms of a Fredholm integral equation of the second 
kind. The singular stress fields near the crack tip are obtained asymptotically, and the stress intensity factor 
(SIF) is defined. Based on the criterion of maximum hoop stress, the crack will propagate along the original 
crack plane and won’t kink. Numerical results show that the dynamic SIF is influenced by the material 
properties and geometric size ratios. 
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1. Introduction 
 
   Composites made of piezoelectric/piezomagnetic materials exhibit magnetoelectric effect that is 
not present in single-phase piezoelectric or piezomagnetic materials. Studies on the properties of 
piezoelectric/piezomagnetic composites have been carried out by numerous researchers [1, 2]. In 
particular, there is a growing interest among researchers in solving fracture mechanic problems in 
media possessing coupled piezoelectric, piezomagnetic and magnetoelectric effects, that is, 
magnetoelectroelastic effects. The crack initiation behavior in magnetoelectroelastic composite 
under in-plane deformation was investigated by Song and Sih [3]. Gao et al. [4] presented some 
exact treatments on the crack problems in magnetoelectroelastic solids. Wang and Mai [5] 
considered the mode III crack problems in an infinite piezoelectromagnetic medium using complex 
variable technique. Qin [6] obtained two dimensional (2D) Green’s functions of defective 
magnetoelectroelastic solids under thermal loading, which can be used to establish boundary 
formulation and to analyze relevant fracture problems. Li [7] made the transient analysis of a 
cracked magnetoelectroelastic medium under antiplane mechanical and inplane electric and 
magnetic impacts. Hu and Li [8] studied the crack in a magnetoelectroelastic strip under 
longitudinal shear. A moving crack problem in magnetoelectroelastic materials has been solved by 
Hu and Li [9]. Interface crack moving along dissimilar magnetoelectroelastic materials has been 
studied by Hu et al. [10], and Zhong and Li [11], respectively. The dynamic response of a 
penny-shaped crack in a magnetoelectroelastic layer was studied by Feng et al., [12]. Boundary 
element method was developed by Rojas-Díaz et al., [13] to study crack problems in linear 
magnetoelectroelastic materials under static loading conditions. The transient anti-plane problem of 
a magnetoelectroelastic strip containing a crack is considered by Yong and Zhou [14]. An anti-plane 
shear crack in a magnetoelectroelastic layer sandwiched between dissimilar half spaces has been 
investigated by Hu et al. [15]. Zhou and Chen [16] analyzed a partially conducting mode I crack in 
a piezoelectromagnetic material. Wang and Han [17] studied the effect of interfacial cracks on the 
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magnetoelectric coupling properties of a magneto-electro-elastic composite laminate. Recently, Hu 
and Chen [18] conducted the pre-curving analysis of a crack in a magnetoelctroelastic strip under 
in-plane dynamic loading and the same authors [19] also studied the anti-plane problem of a 
magnetoelectroelastic strip sandwiched between elastic layers. Wan et al. [20] investigated a mode 
III crack crossing the magnetoelectroelastic bimaterial interface under concentrated 
magnetoelectromechanical loads. 

   The objective of this paper is to study an interface crack between magnetoelectroelastic and 
functionally graded elastic layers under anti-plane shear and in-plane electric and magnetic impact 
loading. Fourier and Laplace transforms are applied to reduce the mixed-boundary-value problem to 
dual integral equations, which can be further expressed in terms of a Fredholm integral equation. 
The stress intensity factors are obtained and the effect of geometric size and material properties are 
analyzed. 
 
2. Basic equations 
 
   Consider a transversely isotropic, linear magnetoelectroelastic material. Suppose the Cartesian 

coordinates zyx ,,  are the principal axes of the material symmetry, and the poling direction is 

oriented in the z –axis. Consider only the out-of-plane displacement, the in-plane electric field and 
in-plane magnetic field, i.e., 
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where iu , iE  and iM  ( zyxi ,,= ) are components of displacement, electrical field and magnetic 

field, respectively; the superscript “e” denotes the quantities of the elastic layers. 
   The constitutive equations for magnetoelectroelastic materials and elastic materials under 
anti-plane shear take the forms as: 
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where zjσ , jD  and jB  ( yxj ,= ) are components of stress, electrical displacement and magnetic 

induction; 44c , 15e , 15h  and 11β  are elastic, piezoelectric, piezomagnetic and electromagnetic 

constants; 11λ  and 11γ  are dielectric permitivity and magnetic permeability; φ  and ϕ  are 

electric potential and magnetic potential, respectively. 

   By introducing two new functions Φ  and Ψ  as [9] 
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The dynamic equilibrium equations can be obtained as 

( ) 0,0, 222222 =Ψ∇=Φ∇∂∂=∇ Vtuu zz                          (8) 
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where 22222 yx ∂∂+∂∂=∇  is the two-dimensional Laplacian operator and V , μ , and ρ  are 
the speed of the magnetoelectroelastic shear wave, the magnetoelectroelastic stiffened elastic 
constant, and the mass density of the magnetoelectroelastic material, respectively. 
 
3. Problem formulation 
 
   Now let us consider an interface crack of length c2  between a magnetoelectroelastic layer (M) 
and a functionally graded elastic layer (F), as shown in Fig. 1. The composite structure is under 
anti-plane shear and in-plane electric and magnetic impacts, and the thickness of the 
magnetoelectroelastic and functionally graded elastic layer are 1h  and 2h , respectively. Due to 
symmetry in geometry and loading conditions, it is sufficient to consider the problem for 

12,0 hyhx ≤≤−∞<≤  only. 

   The material properties of the functionally graded elastic layer vary continuously along the 
y -direction in the form as 

)exp(),exp( 00
4444 yycc eeee βρρβ ⋅=⋅=     ( 10 hy ≤≤ )            (10) 

where β  is a constant and the superscript “0” denotes the material properties of the functionally 

graded elastic layer at the plane 0=y , i.e., 0
44
ec  and 0eρ  are the elastic constant and the material 

density of the functionally graded elastic layer at the plane 0=y , respectively. 
   The governing equation for the functionally graded elastic layer under anti-plane deformation 
can be obtained as: 
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where 00
440

eecV ρ=  is the speed of the elastic shear wave induced by the functionally graded 
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elastic layer. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. An interface crack between magnetoelectroelastic and functionally graded elastic layers 

 
 

   The electrical and magnetic boundary conditions on the edges of the magnetoelectroelastic layer 
are considered as follows: 

)(),,(),0,(),(),,(),0,( 0202 tHBthxBtxBtHDthxDtxD yyyy =−==−=          (12) 

where 0D  and 0B  are uniform electric displacement and magnetic induction applied on the 

magnetoelectroelastic layer, )(tH  is the Heaviside step function, 0)( =tH  for 0<t , and 
1)( =tH  for 0≥t . 

   The mechanical boundary conditions are: 
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where 0T  is the uniform shear stress. 
 
4. Derivation of the integral equations 
 
Appropriate solutions of Eq. (8) and Eq. (11) in the Laplace transform domain may be expressed as 
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where p  is the Laplace transform parameter, ),( psAj , ),( psB j , ),( psC j  and ),( psD j  

( 2,1=j ) are the unknown functions to be solved and 000 ,, cba  and 0d  are real constants 

determined by considering the boundary and interface conditions as 
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 and the parameters k  and 21, kk  are defined as 
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   A simple calculation leads to the expressions for the stresses as 
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   From the boundary conditions (12), (15) and (16), there is only one independent unknown 

function (say ),(1 psB ). The following dual integral equations can be obtained from the mixed 
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boundary conditions in Eqs. (13, 14) as 
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   The dual integral equations can be solved by introducing auxiliary functions ),( pxΦ  as 
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where )(0J  is the zero-order Bessel function of the first kind, and the function ),( pxΦ  

satisfies the Fredholm integral equations of the second kind 
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5. Field intensities 
 
 Once functions ),( pxΦ  is obtained by solving the Fredholm integral equations of the second 
kind Eq. (30), the singular stress fields near the crack tip in the Laplace domain can be obtained 
asymptotically as 
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where r  and θ  are defined as  
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the stress intensity factor (SIF) *TK  is defined as 
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   The stress intensity factor in the time domain can be expressed as 
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∫ Φ=
Br
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where ""Br  stands for the Bromwich path of integration. It should be noted that the stress 
intensity factor is only dependent on the mechanical loading, as seen from Eqs. (34), (35) and  
(27)-(31). 
   The dynamic hoop stress around the crack tip can be obtained as 

)2cos(2)(),,( θπθσ θ rtKtr T
z =           ( πθπ ≤≤− )              (36) 

   It is clear that the maximum hoop stress always appears at the direction ο0=θ , which means 
that if the fracture toughness of the material is same in all directions, the crack will propagate along 
the original crack plane and no crack kinking should appear. 
 
6. Numerical results and discussions 
 
The material properties of the magnetoelectroelastic layer are taken as [21] 
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   Fig. 2 shows the variation of the normalized dynamic SIFs TK  versus normalized time for 

different values of functionally graded material parameter β  when eVV =  and 

∞→= chch 21 . The SIFs increase as the dimensionless time increases and reach the peak points 

at about 1.2=ctV  and oscillate about their static values. As ∞→ctV , the dynamic SIFs 

appoach their static values. The magnitudes of the SIFs decrease as the functionally graded material 

parameter β  increases from negative to positive value. Fig. 3 displays the normalized dynamic 

SIFs TK  vs normalized time for different values of geometric size ratio chch 21 =  when 

1+=β  and eVV = . It needs more time for the cracked composite with smaller size ratio 

chch 21 =  to reach the stabilized values of TK . The second peak value of the dynamic SIF 

seems to increase and appear earlier when the geometric size ratio chch 21 =  decreases. Fig. 4 

shows the normalized dynamic SIFs TK  vs normalized time for different material property 
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μ0
44
ecR =  when 1+=β , 0eρρ =  and ∞→= chch 21 . The increase of the ratio 

μ0
44
ecR =  will lead to the larger peak values of the dynamic SIFs as well as larger corresponding 

static values. 

 

 

 

 

 

 

 

 

 

Figure 2. Normalized dynamic SIFs TK  vs normalized time for different functionally graded material 

parameter β  when eVV =  

 
 

 

 

 

 

 

 

Figure 3. Normalized dynamic SIFs TK  vs normalized time for different geometric size chch 21 =  

when eVV =+= ,1β  
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Figure 4. Normalized dynamic SIFs TK  vs normalized time for different material property μ0
44
ecR =  

when 1+=β  

 

7. Conclusions 
 
   The dynamic fracture analysis of an interface crack between magnetoelectroelastic and 
functionally graded elastic layers under anti-plane shear and in-plane electric and magnetic impacts 
is performed using the integral transform method. The mixed-boundary-value problem of the 
interface crack is reduced to solving dual integral equations, which are further expressed in terms of 
Fredholm integral equations of the second kind. The asymptotic stress fields near the crack tip are 
obtained and the stress intensity factor is calculated. Crack propagation direction is predicted based 
on the maximum hoop stress intensity factor criterion, which shows that the crack will propagate 
along the extension of the original plane. Numerical results show that the SIFs are influenced by the 
geometric size ratios and the material properties of the magnetoelectroelastic composite. The 
obtained results are very useful for the safety and reliability design of the magnetoelectroelastic 
composite. 
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