
13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-1- 
 

Effect of Stress Singularities on Scaling of Quasibrittle Fracture 
 

Jia-Liang Le1,*, Mathieu Piechout1, Roberto Ballarini1 

 
1 Department of Civil Engineering, University of Minnesota, Minneapolis, 55455, United States 

* Corresponding author: jle@umn.edu 
 

Abstract Modern engineering structures are often made of quasibrittle materials, which are brittle 
and heterogeneous. Typical examples include concrete, fiber composites, woven composites, tough 
ceramics, and nano-composites. The salient feature of quasibrittle structures is that the size of the 
fracture process zone is not negligible compared to the structure size, which leads to an intricate 
size effect on the structural strength. The current understanding of scaling of quasibrittle fracture is 
limited to structures with either strong stress singularities or zero stress singularities. Nevertheless, 
many engineering structures are designed to have complex geometries, which could cause weak 
stress singularities. This paper investigates the effect of stress singularities on the scaling of 
quasibrittle fracture both analytically and numerically. The theoretical analysis is derived from a 
generalized weakest link model where the energetic scaling of quasibrittle fracture is incorporated 
into the classical finite weakest link model. The proposed model yields a general scaling equation, 
which captures the transition from the energetic scaling to statistical scaling as the stress singularity 
gets weaker. The proposed analytical model is then verified by a numerical study on the fracture of 
concrete beams with a V-notch under three-point bending, where a wide range of notch angles 
representing different orders of stress singularities is considered.   
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1. Introduction 
 
Many large-scale engineering structures, such as bridges, dams, aircraft and ships, are usually 
designed by extrapolating the results of small-scale laboratory experiments. In order to correctly 
perform this design extrapolation, it is of paramount importance to understand the scale effect on 
the structural strength. This study focuses on structures that are made of brittle heterogeneous 
(quasibrittle) materials, which include concrete, fiber composites, tough ceramics, rocks, sea ice, 
etc. For two-dimensional problems, the nominal structural strength is usually defined as 
σ N = cPmax / bD , where Pmax = load capacity of structure, D = characteristic structural size to be 
scaled, b = width of the structure in the transverse direction, and c = constant which could be 
chosen such that σ N  represents some familiar parameter such as the maximum stress in the 
structure in the absence of the stress concentration. It has been demonstrated that the nominal 
strength of quasibrittle structures is subjected to an intricate size effect. The underlying reason is 
that for quasibrittle structures the size of the material inhomogenieties is not negligible compared to 
the structure size, which directly leads to a size-dependent failure behavior [1, 2]. So far, two 
independent mechanisms have been identified to explain the scaling of strength of quasibrittle 
structures:  
1) Type-1 size effect: the maximum load of the structure is attained after the stable formation of a 
large fracture process zone (FPZ) with distributed cracking, which typically occurs in structures 
with a smooth boundary. The Type-1 size effect for small and medium-size structures is energetic, 
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which can be derived based on the Taylor expansion of the energy release rate function at zero 
crack length [1, 2]. The large size asymptote of this type of size effect is governed by the Weibull 
statistics of material strength. The statistical size effect can be amalgamated with the energetic size 
effect to form the complete energetic-statistical Type-1 size effect [3]. Recent studies also showed 
that this size effect can be alternatively derived from a finite weakest link model where the structure 
is statistically represented by a finite chain of representative volume elements (RVEs) and the 
probability distribution of RVE strength is derived from fracture mechanics of nanocracks 
propagating by small, activation-energy-controlled, random jumps through a nano-structure [4-7].  

 
2) Type-2 size effect: the maximum load of the structure is reached once a single large crack is 
formed. The Type-2 size effect typically applied to quasibrittle structures containing a large notch 
or a large stress-free (fatigued) crack formed prior to maximum load. This size effect is purely 
energetic because the fracture must happen at the pre-existing crack tip. The Type-2 size effect can 
be derived by using the asymptotic approximation of the energy release function for the propagating 
crack or the J-integral [1,2,8].  
 
It is clear that the Type-1 and Type-2 size effects can be considered as two limiting cases in terms 
of the order of stress singularity of the structure. The Type-1 size effect law represents the case of 
zero stress singularity whereas the Type-2 size effect law represents the case of the strongest stress 
singularity (i.e. “−1/2” stress singularity). Nevertheless, many modern engineering structures are 
designed with geometric discontinuities, which produce weak stress singularities. There is still a 
lack of understanding on the transition between these two size effects as a function of the magnitude 
of the stress singularities. This study aims to formulate a universal size effect equation for 
quasibrittle structures through both theoretical and numerical investigations on the fracture of 
structures with a V-notch under mode-I loading.  
 
2. Review of energetic and statistical size effects 
 
Consider a structure of positive geometry containing a V-notch and subjected to mode-I loading 
(Fig. 1), where the notch angle is denoted by γ. Positive geometry is defined such that the peak load 
is reached once the fracture process zone (FPZ) is fully developed. Here we further assume that the 
notch is sufficiently deep, i.e. α =a/D > 0.1, where a = notch depth and D = depth of the structure 
(Fig. 1). In general, the stress concentration at the V-notch tip is governed by two distinct stress 
singularities, which represent the symmetrical and anti-symmetrical deformation modes [9-11]. For 
mode-I fracture, only one stress singularity λ prevails, which corresponds to the symmetrical mode. 
This section briefly reviews the two existing scaling theories, namely energetic and statistical 
scaling.  
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Figure 1. Structure with a V-notch under mode-I facture 
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2.1. Energetic scaling 
 
Consider the case where the stress singularity is sufficiently strong. It is clear that due to the 
significant stress concentration the FPZ must form at the notch tip. Therefore, the corresponding 
scaling mechanism is deterministic. Based on the Williams solution [9], the stress field near the 
notch tip under mode-I loading can be written as: 

σ ij = Hr
λ fij (θ ,γ )                                 (1) 

where r = radial distance from the notch tip, fij = dimensionless function describing the angular 
dependence of the stress, and H = stress intensity factor. Based on dimensional analysis, H can be 
further written as: 

H =σD−λh(γ )                                 (2) 
 
where σ = nominal stress= cP / bD , P = applied load, and h(γ) is the dimensionless stress intensity 
factor, which is determined by the structural geometry. One commonly used mode-I fracture 
criterion for structures with a V-notch is that the peak load is attained when the stress at the distance 
cf from the notch tip reaches the material tensile strength ft [12]. Therefore, we obtain the nominal 
strength of the structure: 

σ N = ftϕ(γ )(D / c f )
λ                            (3) 

where ϕ(γ ) = h−1(γ ) fθθ
−1(0,γ ) , which can easily calculated by an elastic analysis.  

 
Since Eq. 3 is derived based on the linear elastic fracture mechanics, it represents the large-size 
asymptote of the energetic size effect law. The small-size asymptote is very easy to construct. For 
small-size structures, the FPZ occupies the entire notch ligament and consequently the ligament 
must behave like a crack filled with plastic glue. At this plastic limit, the size effect must vanish. An 
approximate equation that bridges the small- and large-size asymptotes has been proposed: 

σ N =σ s 1+ (D / D0γ )
1/βγ!

"#
$
%&
λβγ

                           (4) 

where σ s = nominal strength at the small-size limit, βγ =model parameter, and D0γ = transitional 

size = D0ϕ(γ ) /ϕ(0) ( D0 = D0γ  at γ = 0 ). When λ = −1/ 2  and βγ =1 , Eq. 4 converges to the 
classical Type-2 size effect proposed by Bažant [1, 2], which applies to structures with a large 
pre-existing crack.   
 
2.2. Statistical size effect 
 
The statistical size effect usually applies to structures without stress singularities, e.g. unnotched 
beams. A salient feature of the failure of these structures is that the location of damage initiation 
and localization is uncertain, which is often governed by the randomness of local material strength. 
Furthermore, these structures reach the peak load once any one of the representative volume 
elements (RVEs) is damaged and thus the RVE is here defined as the smallest material volume 
whose failure triggers that failure of the entire structure. The size of RVE l0 is approximately 2-3 
times the size of material inhomogeneities [5]. Statistically speaking, the structure can then be 
represented by a chain of RVEs. Since the RVE size is about the same as the autocorrelation length 
of the random material strength field [7], the RVE strength can be treated as an independent random 
variable and the failure probability of the entire structure can be written as: 

 Pf (σ N ) =1− 1− P1(σ N s(xi ))"# $%
i=1

N

∏                      (5) 
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where P1 = cumulative distribution function (cdf) of strength of one RVE, N = number of RVEs in 
the structure, and s(xi) = dimensionless stress field such that σ N s(xi ) = maximum elastic principal 
stress at the center of the ith RVE located at xi. Recent studies have shown that, based on atomistic 
fracture mechanics and a multiscale transition model for strength statistics, the cdf of RVE strength 
can be approximated by a Gaussian distribution onto which a Weibull tail is grafted at a probability 
about 10-4 — 10-2 [6-7].  
 
The mean strength of the structure can then be calculated as: 

σ N = σ N dPf =0

1
∫ 1− Pf (σ N )#$ %&dσ N0

∞

∫                       (6) 

By considering geometrically similar structures with different sizes, we can obtain the size effect on 
mean structural strength. Though a closed-form expression seems not possible, an approximate 
form has been proposed:  

σ N = Na / D+ Nb / D( )
rn/m!

"#
$
%&

1/r

                          (7) 

where n = dimension of scaling and Na, Nb, and r are constants, which can be determined by the 
statistical parameters of the cdf of RVE strength. It should be pointed out that Eq. 7 shall not be 
applied to structures as D approaches 0. A recent study [13] has shown that for small and 
intermediate-size structures the size effect derived from this finite weakest link model with the use 
of elastic stresses agrees well with the prediction from the nonlinear deterministic calculation. This 
is because the mean size effect behavior for small-size and intermediate-size structures is mainly 
caused by the operative stress redistribution mechanism, which can be well predicted by the 
nonlinear deterministic calculation. At the same time, this mechanism can also be captured by the 
finite weakest link model, where the statistical multiscale transition model used for the formulation 
of the cdf of RVE strength consists of statistical bundles and chains that represent the damage 
localization and load redistribution mechanisms at different scales (albeit only the elastic stresses 
are used) [5-7]. For large-size structures, the zone of stress redistribution is negligible compared to 
structure size and the size effect is mainly caused by randomness of material strength, which cannot 
be captured by the deterministic calculation. Therefore, the size effect curve for the case of zero 
stress singularity can be completely explained by the finite weakest link model [4-7].  
 
3. Generalized weakest link model  
 
For structures with a wide V-notch and therefore a weak stress singularity, there is no guarantee that 
the FPZ would form at the tip of the V-notch. This means that the failure of the structure can be 
statistically represented by the weakest link model. On the other hand, there exists a singular stress 
field at the V-notch tip even though the degree of stress concentration is not significant. 
Furthermore, the fracture of the V-notch itself is associated with an energetic scaling law shown as 
Eq. 4, which cannot be represented by the existing finite weakest link model. This prompts us to 
derive a new scaling model by generalizing the classical finite weakest link model to include the 
energetic scaling of fracture of the V-notch.  
 
In the proposed generalized weakest link model, we isolate the singular stress zone from the 
remaining part of the structure (Fig. 1), where the singular stress zone can be determined by 
comparing Eq. 1 to the numerically simulated elastic stress field. Since the singular stress zone is 
influenced by the presence of the V-notch, whose fracture exhibits an energetic scaling (i.e. Eq. 4), 
we propose to include this energetic scaling for the calculation of the failure probability of the 
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singular stress zone:  

Pf ,VI (σ N ) =1− 1− P1 µ(D)σ N s(xi )"# $%{ }
i=1

N1

∏                       (8) 

where µ(D) = 1+ (D / D0γ )
1/βγ!

"#
$
%&
−λβγ

, and N1 = number of RVEs in the singular stress zone. The 

failure probability of the remaining part of the structure can be calculated by the usual weakest link 
model with the elastic principal stresses: 

 Pf ,VII (σ N ) =1− 1− P1 σ N s(xi )"# $%{ }
i=1

N2

∏                        (9) 

where N2 = number of RVEs in the region outside the singular stress zone. The failure probability 
of the entire structure can then be written as: 

                      Pf (σ N ) =1− 1− Pf ,VI (σ N )"
#

$
% 1− Pf ,VII (σ N )"
#

$
%                    (10) 

from which we can calculate the mean size effect. Similar to the case of statistical scaling, a closed 
form expression is impossible. Since the entire framework still relies on the finite weakest link 
model, we can use the same asymptotic matching technique as that for the statistical scaling to 
obtain an approximate scaling law: 

σ N =σ 0 C1 µ
m(D)ψ1 +ψ2

!
"

#
$
−r/m D+ ls

l0

!

"
##

$

%
&&

−2/m

exp[−(λ / λ1)
2 ]+

µ−r (D)Db
exp[−(λ / λ2 )

2 ]D+ lp

!
"
#

$#

%
&
#

'#

1/r

  (11) 

where σ0 = reference stress, C1,  r,  λ1,  λ2 ,  ls ,  lp ,  Db = constants, m = Weibull modulus, 

ψ1 = s(x)
m
dV (x),  

VI

∫ and ψ2 = s(x)
m
dV (x) .

VII

∫  Note that here we introduced ls  and lp to 

regularize the functional behavior as D approaches 0. Furthermore, it is easy to show that the large- 
and small-size asymptotes of the mean strength requires: 
 

σ 0C1
1/r = s0

1/rΓ(1+1/m)                            (12) 

σ s =σ 0 Db / lp +C1(ψ1 +ψ2 )
1/m(ls / l0 )

−2/m exp[−(λ / λ1)
2 ]{ }

1/r
          (13) 

 
where s0 = Weibull scaling parameter. The small-size strength limit σ s  can usually be obtained by 
simple plastic analysis by treating the ligament as a crack filled by the plastic glue. 
 
It is clear that Eq. 11 converges to Eqs. 4 and 7 in the two limiting cases. For the transition between 
these two limits, the size effect consists of both energetic and statistical components. At the 
small-size limit, the size effect is mainly governed by the statistical scaling component since the 
energetic scaling term predicts a weak size effect. At the large-size limit, the scaling is governed by 
the Weibull statistics modified by an energetic scaling term, which leads to a compound 
energetic-Weibull statistical scaling. Though the focus of this study is on mode-I fracture, the 
present framework has been extended to general mixed-mode fracture, which is applicable to 
bimaterial structures. When dealing with mixed-mode fracture, the energetic scaling term would 
generally contain two distinct stress singularities [14]. 
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4. Numerical simulation 
 
To verify the proposed analytical model, we investigate the size effect on strength of concrete 
beams with a V-notch under three-point bending (Fig. 2). The beam has a 1:6 depth-to-span ratio 
and notch depth is 20% of the beam depth. In the simulation, we consider different notch angles, i.e. 
γ = 0°, 90°, 120°, 135°, and 170°. For each notch angle, a series of geometrically similar specimens 
with a size range 1: 2: 4: 8: 16: 64: 128 (the depths of the smallest and largest beams are 37.5 mm 
and 4.8 m, respectively) is simulated. Based on the Williams solution, these notch angles 
correspond to the following orders of mode-I singularity: λ = −0.5,  − 0.455, − 0.3843,  
−0.3264, − 0.0916 .  
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Figure 2. Numerical simulation of three-point bend beam 

 
It is well known that concrete exhibits a complex constitutive behavior. Extensive efforts have been 
devoted to numerical modeling of fracture of concrete, e.g. [15-18]. Since we are interested in static 
mode-I fracture, we adopt the default plastic-damage model in ABAQUS because it is sufficient for 
the purpose of the present study; a detailed description of this constitutive model can be recovered 
from [19]. The material properties are chosen as follows: Young’s modulus E = 30 GPa, Poisson 
ratio ν = 0.2, tensile strength ft = 3 MPa, compressive strength fc = 30 MPa, and Mode-I fracture 
toughness Gf = 100 N/m. Though we specify the compressive strength, the compressive region of 
the beam is expected to remain elastic. Therefore, the nonlinear part of the compressive behavior is 
not of particular interest for the present study. All the specimens undergo displacement-controlled 
loading. In this study, the numerical simulation is performed within a deterministic framework. 
Previous studies have shown that the deterministic simulation with a strain-softening constitutive 
model can successfully capture the entire size effect for the case of strong stress singularity and the 
size effect for the small- and intermediate structure sizes for the case of zero stress singularity [1-2]. 
Therefore, we expect that for the case of weak stress singularity the deterministic numerical model 
is sufficient for simulating the size effect for the small-and intermediate structure sizes. For the 
large-size asymptote, the deterministic simulation cannot yield the statistical scaling components. In 
this study, we mainly focus on the small- and intermediate size range, which is applicable to most 
engineering designs. Therefore, only deterministic simulation is necessary. As will be shown later, 
the influence of the statistical scaling component only prevails in structures of very large size.  

For the finite element modeling, the notch tip is considered to have a very small width, i.e. 5 mm, 
which is a constant for all the geometries and sizes. For the deterministic simulation, the damage 
occurs near the mid-span of the beam. Therefore, to reduce computational efforts, we model the 
middle portion of the beam with a refined mesh (i.e. 5 mm) and the damage plasticity model 
whereas the rest part of the beam is modeled by a coarse mesh with a purely elastic model. For each 
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specimen, the assumed region, where the nonlinear material model is used, is further checked as 
part of the simulation. As the notch angle increases, this nonlinear region becomes larger. It should 
be pointed out that the present modeling is not as efficient as the crack band model and the nonlocal 
model, where larger element sizes can be used. However, the use of the crack band and nonlocal 
models requires extensive modeling efforts with special cautions such as the choice of crack band 
width [20] and treatment of the nonlocal weighting function along the structural boundary.  

Fig. 3 presents the simulated nominal stress-relative deflection curves for specimens of all sizes and 
all different notch angles, where the nominal stress is defined as = P/bD and the relative 
displacement is defined as δ = Δ/D (Δ = load-point displacement). It is observed that as the structure 
size increases the post-peak softening portion of the load-deflection curve becomes steeper, which 
implies a more brittle failure behavior. It should be noted that for large specimens (i.e. D = 1.2, 2.4, 
and 4.8m) the post-peak behavior is not captured, which indicates that a snap-back instability may 
have occurred. The snap-back behavior could be captured by loading the specimens by the crack 
mouth opening displacement. This is not done because we are interested only in the peak load.  
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Figure 3. Simulated nominal stress-relative displacement curves 
 

 
For the 2D specimens, we can simply define the nominal strength of the beam as σ N = Pmax / bD , 
where b = 1. Fig. 4 shows the simulated size effects on the nominal strength for different notch 
angles and the optimum fitting by Eq. 11. As mentioned previously, the small-size strength limit σs 
can easily be calculated by plastic analysis, and the Weibull modulus for concrete is known to be 24. 
From the fitting, we obtain lp = 40 mm, ls = 150 mm, r = 0.88, s0 = 0.488 MPa, D0 = 90 mm, λ1 = 
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0.301, λ2 = 0.208, and βγ =1, 1, 1.5, 2, 1.1 for γ = 0°, 90°, 120°, 135°, and 170°. It is clear from Fig. 
4 that the Eq. 11 agrees well with the simulation results. It should be noted  that the simulated size 
effect curve does not match well with Eq. 11 at the large-size limit for beams with a 170° V-notch. 
This is due to the fact that we used deterministic simulation, which cannot capture the associated 
large-size asymptote of the classical Weibull scaling relation. Furthermore, it is observed that such a 
difference occurs for very large beam size (i.e. D > 1.2m), which indicates that deterministic 
calculation is sufficient for most normal-size concrete beams.  
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Figure 4. Size effect curves for notched beams: a)-e) Simulated size effect curves fitted by Eq. 11 
and f) 3D plot of simulated effects of structural size and notch angle on nominal strength 

 
5. Conclusions 
 
This paper shows that the scaling of strength of quasibrittle structures is strongly dependent on the 
magnitude of the stress singularities. Such dependence can be derived from a generalized weakest 
link model, where the classical energetic scaling law is combined with the finite weakest link model. 
For the case of strong stress singularities, the scaling of fracture is purely energetic, which can be 
derived from fracture mechanics. For the case of zero stress singularity, the size effect can be 
explained by random material strength through the finite weakest link model. For the case of weak 
stress singularities, the scaling is governed by both energetic and statistical mechanisms.  
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