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Abstract  Engineering a bimodal grain size distribution in nanostructured materials has been proved to 
effectively achieve both higher strength and higher ductility. In these materials, large grains provide 
hardening ability and small grains provide larger yield stress. Accounting for the contributions of 
microcracks which nucleate in the nano/ultrafine grained phase and stop at the boundary of large grains 
during the plastic deformation, a mechanism-based plastic model is developed to describe the strength and 
ductility of the bimodal metals. The strain-based Weibull probability distribution function is utilized to 
predict the failure behavior of the bimodal metals. With the aid of the modified mean field approach, the 
stress–strain relationship can be derived by combining the constitutive relations of the nano/ultrafine grained 
phase and the coarse grained phase. Numerical results show that the proposed model can completely describe 
the mechanical properties of the bimodal metals, including yield strength, strain hardening and uniform 
elongation. The predictions are in good agreement with the experimental results. These results will benefit 
the optimization of both strength and ductility by controlling constituent fractions and the size of the 
microstructures in materials. 
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1. Introduction 
 
Nanostructured and ultrafine-grained metallic materials have been observed to perform outstanding 
physical and mechanical properties. One of the most remarkable improvement is the superior 
mechanical strength compared to those of corresponding coarse-grained counterparts [1]. Therefore, 
these materials have been of significant interest and the key importance in designing lighter and 
stronger structures. So far, there have been several strategies to obtain the higher strengthening 
materials, including refining grain size, solid solution alloying and plastic straining [2], but these 
materials perform the disappointingly low tensile ductility. Due to this fact, the simultaneously 
higher strength and ductility in metals and alloys are expected and have emerged as the essentially 
challenging issue in the application of the nanostructured metals. In the past ten years, several 
alternative approaches are addressed to achieve the higher strength with keeping the high ductility, 
such as by generating the internal boundaries such as nanotwins in polycrystalline metals [3], or 
mixing the various sizes of microstructures in nanostructured materials [4-5].  
 
The bimodal grain size distributions in nanostructured metals/alloys, which is considered as an 
effective approach to obtain the higher strength with good ductility, were first studied 
experimentally by Wang et al [4] and Tellkamp et al. [6] respectively. Their observations showed 
that such kind of nanostructured metals/alloys have higher strength and high ductility 
simultaneously. After these pioneering works, the subsequent various experiments and theoretical 
studies are carried out to investigate the mechanical performance in bimodal nanostructured metals 
and alloys [7-9]. These experiments demonstrated that the nanograins or ultrafine grains contribute 
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to the higher strength and the higher ductility is attributed to the coarse grains. For the fracture in 
bimodal metals/alloys, there exist some explanations to shed some lights into the possible 
mechanism of failure. The cavitations in nanograin/ultrafine phase, necking in coarse grains and 
shear localization are responsible for the fracture in bimodal metals [10-12]. Besides of that, the 
cavitations and microcracks play an important role in the improved ductility of the bimodal 
metals/alloys, which have been indentified further by the recent experiments [13]. The predictions 
of mechanical behaviors in bimodal metals/alloys have become a key issue to optimize the grain 
size distribution and the volume fraction of continents in bimodal metals/alloys for desiring the high 
strength and high ductility. So far, there are several works to develop the theoretical model for 
predicting the constitutive behavior and the failure properties of bimodal metals/alloys [14-15]. 
 
It has been demonstrated in experimental observations of tensile deformation in bimodal materials 
that the nanoscale voids or nano/microcracks lead to the modification of stress and strain for the 
plastic deformation. The objective of the present paper is to introduce the mechanism-based plastic 
model for bimodal metals in which the impacts of the microcracks generated during plastic 
deformation in bimodal materials on the mechanical properties are accounted for [16]. The bimodal 
copper is selected as an example to predict the corresponding mechanical behavior of bimodal 
metals. The weibull probability distribution of nan/microcracks is analyzed in the simulations. 
Numerical results show that the developed plastic model of bimodal metals can describe the 
mechanical properties of bimodal copper completely.  
 
2. A Set Up of Model 
 
The nanostructured metal with bimodal grain size distribution is considered as the composite metals 
consisting of the nanograined matrix phase and the course grained phase, as shown in Fig. 1. Since 
the grain boundaries have great contribution on the mechanical properties of nanocrystalline 
materials, the strain gradient in GBDPZs are involved in the proposed model to capture the effects 
of grain boundaries on the plastic deformation. Therefore, the mechanism-based strain gradient 
plasticity [17] is adopted here to describe the stress-strain response in each constituent of bimodal 
metals. A summary of the formulation is provided in the following. The strain rate ε can be 
decomposed into its elastic and plastic parts, 

e pε = ε + ε                           (1) 
The elastic strain rate is obtained from the stress rate in the linear elastic relation as 

:eε M σ                         (2) 
where M  is the elastic compliance tensor.  The plastic strain rate is proportional to the deviatoric 
stress 'σ  based on the conventional J2-flow theory of plasticity, given as 

p
p

e

3ε
'

2
ε σ
                           (3) 
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 

Bimodal metals Nano/ultrafine grains Coarse grains

       Matrix phase
(nano/ultrafine grains)

Coarse grain phase  
Fig. 1 Schematic drawings of bimodal grain size distributions in polycrystalline materials with 
assumption of the composite mixture model. 
 

Here, ' / 3ij ij kk ij      and 3 ' ' / 2e ij ij    is the von Mises equivalent stress. pε is the 
equivalent plastic strain rate which is determined by 

0mp e

flow

σ
ε =ε[ ]

σ
                           (4) 

in which ε 2ε ' ε ' / 3ij ij    is the equivalent strain rate and ε ' ε ε / 3ij ij kk ij    . 0m  is the 
rate-sensitivity exponent and flowσ  is the flow stress which will be addressed in the coming 
subsections for coarse grain and nano/ultrafine grains respectively. Eqs. (2)-(4) then establish the 
triaxial constitutive relation for the constituents in bimodal metals. 
 
In the coarse grains, the surface-to-volume ratio of the grain boundaries is low enough to neglect its 
contribution on the plastic deformation. The primate deformation mechanism is dominated by the 
intragrain dislocation-mediated interaction which can be described by the Taylor evolution law. 
Thus the flow stress of the coarse grain can be expressed as    

0flow bM b                                               (5) 

Here,  , and M are the empirical constant, the shear modulus and the Taylor factor, respectively. 

0 is the lattice friction stress and b  represents the back stress .  denotes the density of 
dislocations in grains which can be determined by the Kocks-Mecking’s model [40]. According to 
Kocks and Mecking’s model, the density of dislocations in the crystal interior obeys the evolution 
law with plastic strain, which allows for competition between accumulation and annihilation by 
dynamic recovery [18].  
 
For the flow stress in the nano/ultrafined grains phase, the isotropic strain hardening is involved in 
the flow stress that is in consistency with the one in coarse grains described by Kocks-Mecking 
model, while the back stress with respect to the kinematic strain hardening is excluded in the 
nano/ultrafine grains phase. Then, the flow stress of the matrix phase can be expressed by 

 0flow I GBM b                                   (6) 
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in which the Taylor term in the flow stress is relevant to the dislocation densities in crystal interior 
and the GBDPZ. The density of dislocations in the GBDPZ can be expressed by 

GB GB GB
GB

GB
Cell

n
k

V b

                              (7) 

Here, 6 /GB GB
GBDPZ Gk d d . 

 
2.1. Impact of nano/microcracks 
 
As the appearance of microcracks indicates, the number of dislocations stopped at the grain 
boundaries or around the cracks is increased. These dislocations pile up along the grain boundaries, 
impeding the movement of dislocations and ultimately resulting in back stress effects that must be 
taken into account during the plastic deformation in the nano/ultrafine-grained phase. Thus, the 
constitutive relation of the nano-grained phase will involve the back stress term in the flow stress 
expression. The flow stress in this phase is rewritten as  

             *
0flow I GB bM b         ,                                 (8) 

where *
b  is the microcrack-induced back stress. The microcrack-matrix-effective-medium 

approach is utilized here to model the overall stress and strain in the nano/ultrafine-grained phase of 
the bimodal metals. The representative volume element (RVE) is often applied to account for the 
crack orientation statistics in the composite mechanics. The RVE boundary is subjected to tractions 
in equilibrium with a uniform overall stress of   and the average strain in a solid with 
microcracks is consistent with regular and singular parts as 

m cε = ε + ε ,                                        (9) 
where mε and cε denote the matrix strain averaged over the RVE and the microcrack-induced 
variations in the overall average strain, respectively. If the matrix satisfies to be linear elastic, the 
matrix strain can be written as : m mε M σ . Because the microcracks generated during the plastic 
deformation of the bimodal metals are supposed to be parallel, the corresponding effective moduli 
are as follows:   

2
1 10 0

1 0 12 0
0

16(1 ) 8(1 )
[1 ] ; [1 ]

3 3(1 / 2)

v v
E E G G

v
   

   


.         (10) 

Please note from Eq.(15) that the effective moduli of the bimodal metals are associated with the 
density of microcracks in the materials. Experiments have revealed that the number of microcracks 
in the bimodal metals increased during the plastic deformation, suggesting that the density of 
microcracks in the bimodal metals is sensitive to the applied stress or strain. From this perspective, 
the strain-based Weibull distribution function with respect to the plastic strain is adopted here to 
character the number of microcracks. Thus the density of microcracks can be expressed as 
following 

0 0( ) (1 ( ))W W pP f f                              (11) 

Here, 0 is a constant; 0( ) exp( ( / ) )m
W p pf     is the strain-based Weibull distribution function in 

which 0  is the reference strain and m  is the Weibull modulus. 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-5- 
 

 
2.2. Composite model 
The composite model derived from the modified mean-field approach involves the Hill’s 
recognition of a weakening constraint power for plastic deformation [19]. However, the flow stress 
in the following derivation is substituted by those in the nano/ultrafine-grained phase and the 
coarse-grained phase, respectively, both of which will be derived in the next section. Thus, the 
secant Young’s modulus and secant Poisson ratio of the ith phase can be expressed by  

0

( ) ( )
( ) ( ) ( )

( )( ) ( ) ( )
m 111

( ) ( )

1 1
, ( )

2 2
1 ( )

i S i
S i S i i

ii i i

i i
flow flow

E E
E v v

E E
 


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

 ,                          (12) 

Throughout this paper the matrix will be indicated as phase 0 and coarse grains as phase 1. ( )iE and 
( )iv denote the Young’s modulus and the Poisson’s ratio of the ith phase, respectively. The 

corresponding secant bulk and shear moduli of the ith phase are taken to satisfy the isotropic 
relations as ( ) ( ) ( ) ( ) ( ) ( )/[3(1 2 )], /[2(1 )]S i S i S i S i S i S ik E v E v    , respectively. Suppose that the 
composite is subjected to a boundary-displacement with a uniform strain ε , the relationship 
between the hydrostatic and deviatoric strains of the constituent phases and those of the composite 
are as follows [19]:  
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c
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     
     

   
     

(1)

 ,       (13) 

where the mean stress components of the matrix phase and inclusions are given by 
(1)

0 1 0 0(1) (1)1
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   

.         (14) 

Here, if is the volume fraction of the ith phase and  and are the components of Eshelby’s tensor 
for spherical inclusions, as follows:  

0 0
0 0 0 0 0

0 0

1 2(4 5 )
( , ), ,
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s s
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v v
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 

.                      (15) 

Therefore, the dilatational and deviatoric stresses and strains of the composite are connected by 
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.                (16) 

To get an accurate description of the grain size-dependent local interaction and behavior in each 
phase, the grain size statistical distribution is frequently used to characterize the grain size 
distribution. Here, the grain size distribution in each phase is supposed to follow a Rayleigh 
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distribution with one parameter, instead of the log-normal distribution, for simplicity [20]. 
 
3. Numerical results and discussion 
 
We now apply the developed models to predict the mechanical and failure behaviors of bimodal 
coppers, and then make comparisons with experimental results of bimodal coppers [4]. In the 
proposed composite mixture model, the matrix phase and coarse grain phase have equal elastic 
properties. These and other material parameters used in calculation are adopted in Ref [21]. For the 
sake of predicting the stress-strain relation of bimodal copper, the constitutive behavior in the 
matrix phase and coarse grain phase must be captured firstly. With the aid of the proposed 
constitutive relations, the stress-strain curves of matrix phase with average grain size as 300nm and 
coarse grain phase with mean grain size as 2μm are given in Fig.2a and Fig.2b respectively, by 
adopting the corresponding parameters. The corresponding experimental results are also plotted in 
Fig.2. Due to that the strain gradient is involved in the ultrafine or nanograins phase to describe the 
contribution of grain boundaries on the deformation mechanism, a reasonable value of strain 
gradient is provided to fit the experimental data. Note that the prediction can be in good accord with 
the measurements shown as in Fig.2a. For the coarse grain phase, the isotropic and kinetic strain 
hardening are both taken into account in the proposed constitutive relation and the calculated results 
can be agreeable very well with the experimental results (Seen in Fig.2b). After indentifying the 
constitutive relation in matrix phase and coarse grain phase, we then can simulate the stress-strain 
response in the framework of the proposed composite model involving the contributions of the 
microcracks. Fig.3 plots the predicted results based on the proposed model and the experimental 
data for bimodal copper are also reproduced in the figure. Here, the initial crack density 0 is given 
as 0.04 and the Weibull modulus m as 10. It can be clearly noticed that the proposed model can 
capture very well the mechanical behavior in bimodal copper, the agreement between the 
simulations and the experiments is quite good not only in the yield stress but also in the strain 
hardening and the elongation at the ultimate strength.  
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Fig. 2 Comparison of the stress-strain relationship between the experiments and theoretical results 
of coppers for the ultrafine/nanograins and the coarse grains 
 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-7- 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

600

 Theoretical results
 Experimental data

Bimodal Cu: d
ulf

= 300nm, d
cg

= 2000nm, f
cg

=25% 

 

 

T
ru

e 
S

tr
es

s(
M

P
a)

True Strain

 
Fig. 3 Comparison of the stress-strain relationship between theoretical results and experiments for 
the bimodal Cu[8] 
 
Owing to that the matrix grain dominates the high strength of the bimodal coppers and the 
inhomogeneous microstructures induces various mechanisms of strain hardening, we then further 
examined the dependence of the volume fraction of coarse grains on the mechanical response in 
bimodal copper. we plot the strength vs. uniform elongation with dependence of the volume fraction 
of coarse grains for the Weibull modulus as 3, 6 and 12 in Fig.4. It is worth to note from the figure 
that the strengths, including yield strength and ultimate strength, is weakened while the ductility is 
improved with the increment of the volume fraction of coarse grains. For the various Weibull 
modulus, the ductility increases with the increment of the Weibull modulus, and the slope of the 
curves for three different Weibull modulus are quite different with each other. It is also interesting to 
find from Fig.8 that the yield strength is independent on the Weibull modulus while the ultimate 
strength becomes smaller with decreasing the Weibull modulus.  
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Fig. 4 Relationship between the strength and uniform elongation with different Weibull modulus for 
bimodal copper (dulf= 300nm, dcg= 2000nm) 
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We further plot the curves of failure probability varied with the failure strain from the strain-based 
Weibull distribution function for the nanograined copper, coarse grained copper as well as bimodal 
coppers in Fig.5a. Inspired by the experimental observations, the characteristic strain 0  is adopted 
approximately as the measured uniform elongation. The Weibull modulus for the coarse grains and 
nano grains are determined by fitting the experimental results and the ones for bimodal cases are 
obtained by comparing with experiments. It can be found from the figure that the curves of bimodal 
cases are all located in the region surrounded by the curves of nanograins and coarse grains. The 
curves of bimodal copper with volume fraction of coarse grain as 45% and 83% in Li’s 
measurements [9] are close to the one of the nano grains. It means that the failure properties of 
these two cases perform in an obvious brittleness comparable with nanocrystalline metals. The 
curve of the bimodal copper achieved by Wang et al [4], however, approaches the one of the coarse 
grains as well as the one with coarse grain fractions as 98% [9]. Under the same reference strain, the 
variability of the failure strain with a large Weibull modulus is less than the one with a small 
Weibull modulus, as shown in Fig. 9b. It means that, suppose the reference strain in the bimodal 
metal of 0.45cf  to be 30%, the limited measurements of corresponding case in Ref.[9] can be 
included in the reasonable failure probability which is determined by the sufficient data of measured 
samples. 
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Fig. 5 The failure probability varied with failure strain with different Weibull modulus and a given 
volume fraction of coarse grain in bimodal copper. 
 
4. Conclusion 
 
In this paper, a micromechanics-based model, which has been developed in the previous authors’ 
work, is introduced to investigate the mechanical behaviors of polycrystalline coppers with bimodal 
grain size distribution, accounting for the microcracks generated during plastic deformation.. 
Because of the appearance of the microcracks in the bimodal metals, the local mechanical 
properties are modified completely. After indentifying the related parameters in the developed 
model, the stress-strain response of the bimodal copper are predicted to make a comparison with the 
corresponding experimental results. The present numerical results reveal that the proposed 
micromechanical model can be utilized to describe the mechanical behavior of bimodal metals 
completely and successfully and to be expected to predict the mechanical properties such as the 
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yield stress and ductility. The predictions based on the proposed model are agreeable very well with 
the experimental data of bimodal copper. The results with respect to the Weibull modulus of 
microcrack density suggest that the bimodal metals will have good ductility with higher Weibull 
modulus which can be considered to be associated with the microstructures in the materials. The 
results in this paper will shed some lights on optimizing the distribution of microstructures and the 
grain size in polycrystalline materials to promise the achievement of higher strength and higher 
ductility in polycrstal metals or alloys. 
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