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AbstractAbstractAbstractAbstract Elastic-plastic limit pressure(EPLP) of closed-end cylinders under internal pressure is derived, using a
new yield criterion that depends on stress triaxiality and Lode angle. The von Mises, Tresca, twin-shear and
Drucker-Prager yield criterions are encompassed in the new yield criterion for the EPLP. The results reveal that,
with the increasing of the parameters of stress triaxiality and Lode angle, the EPLP decreases for cylinder with
fixed outer-to-inner radius ratio(k). As k increases, the EPLP increases when the parameters of stress triaxiality
and Lode angle are certain value. The parameter of Lode angle is much more important than the parameter of
stress triaxiality affecting the EPLP of cylinders. The new yield criterion with smaller parameters of stress
triaxiality and Lode angle is used instead of the conventional von Mises, Tresca, twin-shear and Drucker-Prager
yield criterions in design, it can lead to substantial saving the material required. While the new yield criterion with
larger parameters of stress triaxiality and Lode angle is used in design, it can make the design more safe and
reliable.
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1111.... IntroductionIntroductionIntroductionIntroduction

Closed-end cylinders are used in engineering, as pressure vessels, nuclear reactors and capsules. It
is important to know the EPLP of cylinders under internal pressure. A considerable amount of work
has been done on the problem of elastic-plastic analysis in a closed-end cylinder under internal
pressure[1-4]. However, when the conventional yield criterions are adopted to derive the EPLP, the
Tresca[5] and von Mises[6] yield criterions ignore the effect of the intermediate principal stress and
octahedral normal stress on yield, respectively. They lead to conservative predictions of limit
pressures. Although the twin-shear[7] and Drucker-Prager[8] yield criterions overcome above
deficiencies, they still ignore the effect of stress triaxiality and Lode angle on yield. By the view of
equivalent stress, stress triaxiality and Lode angle, the von Mises yield criterion ignore the effect of
stress triaxiality and Lode angle on yield, and the Tresca yield criterion also ignore the effect of
stress triaxiality on yield. But the effect of stress triaxiality and Lode angle on yield have been
confirmed[9-13]. Based on the von Mises, Tresca and Drucker-Prager yield criterions, a new yield
criterion, which considers the effect of stress triaxiality and Lode angle on yield, is proposed and
confirmed by experiments[9]. In this paper, the EPLP of closed-end cylinders under internal
pressure, which are two important parameters in the design of closed-end cylinders, is determined
using the new yield criterion. Important results concerning the influence of the EPLP determined
with the new yield criterion on the design of closed-end cylinders under internal pressure are
presented.
2.2.2.2. DeterminedDeterminedDeterminedDetermined tttthehehehe EPLPEPLPEPLPEPLP ofofofof closed-endclosed-endclosed-endclosed-end cylindercylindercylindercylinderssss underunderunderunder internalinternalinternalinternal pressurepressurepressurepressure usingusingusingusing
thethethethe newnewnewnew yieldyieldyieldyield criterioncriterioncriterioncriterion

The new yield criterion, which considers the effect of stress triaxiality and Lode angle on yield, as
follows,

( )[ ] ( )[ ]γηησσ θaxθ0ηeqyld 1 cccc −+⋅−−= . (1)

Where γ and cax are two parameters defined by
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Where σeq, η and θ are equivalent stress, stress triaxiality and Lode angle, respectively. σyld is the
yield stress. η0, cη, cθ, ct and cc are material constants, this depends on which type of reference test is
used to calibrate the relationship of stress-strain.

Let us consider a closed-end cylinder under an internal pressure p. The inner and outer radius
of the cylinder are a and b, respectively. In elastic stage, the σeq, η and θ are determined with Lame
solutions of the elastic stress distribution in cylindrical coordinates system[14] as follows,
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Where k=b/a and ρ=b/r (a≤r≤b).
Yielding will appear at the inner surface of the closed-end cylinder at the elastic limit

pressure(ELP) pe. Substituting Eq. (3) into Eq. (1), the yield condition is satisfied at the inner
surface (σr)r=a=-pe, the ELP obtained by the new yield criterion is
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Because θ is a constant (θ=π/6), the effect of Lode angle on the ELP is equal to cθ. The relationship
of stress-strain is obtained from smooth round bar tensile test, therefore, η0 is equal to 1/3. cη
represents the effect of stress triaxiality on material plasticity.

When the internal pressure exceeds pe, a plastic zone will appear at the inner surface and
spread toward the outer surface. The elastic-plastic boundary at any stage has radius ry (a≤ ry ≤b), in
the elastic region (ry≤ r ≤b), the radial stress is obtained from Lame’s equations using the boundary
condition σr=0 at r=rb as follows,
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In plastic region, the material is assumed perfectly elastic-plastic, the equation of equilibrium
is

0θrr =
−

+
rdr

d σσσ
. (6)

The cylinder is assumed at the plane strain condition, therefore, the longitudinal stress in the plastic
region is

( )θrz 2
1

σσσ += . (7)

The σeq, η and θ are determined with Eq. (7), σr and σθ as follows,
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Substituting Eq. (8) into Eq. (1), we have
rθ σσ BA −= . (9)
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When cη≠0, Substituting Eq. (9) into Eq. (6), then the boundary condition (σr)r=a=-p is satisfied, the
stress distribution in the plastic region (a≤ r≤ry) is
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According to the stress continuity of radial stress σr across r=ry, it requires that
( )

yrrr =σ (elastic zone)= ( )
yrrr =σ (plastic zone). (11)

Substituting the radial stress Eq. (5) for the elastic zone and the radial stress Eq. (10) for the plastic
zone into Eq. (11), the relation of pressure p with plastic zone radius is obtained as follows
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When ry becomes equal to b, the closed-end cylinder is completely plastic, the plastic limit
pressure(PLP) for closed-end cylinder is, therefore, obtained as
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When cη=0, the PLP for closed-end cylinder also is obtained as follows,
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Fig.1 Relation of EPLP of closed-end cylinder under internal pressure with cθ (k=2).

If the ratio of outer radius to the inner radius is 2(k=2), the relation of EPLP of closed-end
cylinders under internal pressure with cθ is illustrated in Fig.1. It can be seen that, the EPLP
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calculated by von Mises, Tresca and twin-shear yield criterions equal these obtained by the new
yield criterion when cη=0 and cθ=1, 2/√3 and √3/2, respectively. While cη≠0, cη=3(1-cθ)/cθ and cθ>1,
one will get the EPLP determined with Drucker-Prager. Therefore, it can be concluded that the von
Mises, Tresca, twin-shear and Drucker-Prager yield criterions are encompassed in the new yield
criterion for the EPLP. It is also found that, when cη=0.0 and cθ>√3/2, the EPLP is higher than those
obtained by the von Mises, Tresca, twin-shear and Drucker-Prager yield criterions. When cη=0.0
and cθ<2/√3, the EPLP is lower than those obtained by conventional yield criterions. When cθ is
certain value, the EPLP in range of cη<0.0 is larger than that at cη=0.0, the EPLP in range of cη>0.0
is smaller than that at cη=0.0. cθ is much more important than cη affecting the EPLP of cylinder,
similar conclusions are also found in earlier report[9, 15]. The EPLP decreases with the increasing
of cθ and cη.
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Fig.2 Relation of ELP of closed-end cylinders under internal pressure with k at cη=0(a) and cη≠0(b).

A number of the relations of EPLP with the ratio of outer radius to the inner radius, are shown
in Fig. 2 and Fig. 3. In Fig.2 and Fig.3, the EPLP increases with the increasing of k, when cθ and cη
are certain value. In Fig.2(a), when the effect of stress triaxiality on yield is ignored (cη=0), it is
worth noting that, if k approaches the value 3.0, the increase in the ELP is very small with the
increasing of k. While the effect of stress triaxiality on yield is considered (cη≠0), the increase in the
ELP is also very small when k≥2.5, shown in Fig.2(b). From what I have mentioned above, we can
see the new yield criterion with smaller cθ and cη is used instead of the conventional von Mises,
Tresca, twin-shear and Drucker-Prager yield criterions in design, it can lead to substantial saving the
material required. While the new yield criterion with larger cθ and cη is used in design, it can make
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the design more safe and reliable.
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Fig.3 Relation of PLP of closed-end cylinders under internal pressure with k at cη=0(a) and cη≠0(b).

3333.... SummarySummarySummarySummary

The EPLP of closed-end cylinders under internal pressure is derived using the new yield criterion
that depends on stress triaxiality and Lode angle. The von Mises, Tresca, twin-shear and
Drucker-Prager yield criterions are encompassed in the new yield criterion for the EPLP. The results
reveal that, with the increasing of cθ and cη, the EPLP decreases for cylinder with fixed k. As k
increases, the EPLP increases when cθ and cη are certain value. cθ is much more important than cη
affecting the EPLP of cylinder, The new yield criterion with smaller cθ and cη is used instead of the
conventional von Mises, Tresca, twin-shear and Drucker-Prager yield criterions in design, it can
lead to substantial saving the material required. While the new yield criterion with larger cθ and cη is
used in design, it can make the design more safe and reliable.
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