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Abstract  Dynamic crack propagation in rubber is modeled and analyzed numerically using the finite 
element method. The problem of a suddenly initiated crack at the center of stretched sheet is studied under 
plane stress conditions. A nonlinear finite element analysis using implicit time integration scheme is used. 
The bulk material behavior is described by finite-viscoelasticity theory and the fracture separation process is 
characterized using a cohesive zone model with a bilinear traction-separation law. Hence, the numerical 
model is able to model and predict the different contributions to the fracture toughness, i.e. the surface 
energy, viscoelastic dissipation, and inertia effects. The separation work per unit area and the cohesive 
strength has been parameterized, and their influence on the separation process has been investigated. A 
steadily propagating crack is obtained and the corresponding crack tip position and velocity history as well 
as the steady crack propagation velocity are evaluated and compared with the experimental data. A minimum 
threshold stretch of 3.0 is required for crack propagation. The numerical model is able to predict the dynamic 
crack growth such that the strength and the surface energy vary with the crack speed.  
Keywords  rubber, crack, viscoelasticity, cohesive zone, dynamic fracture 
 
1. Introduction 
 
Elastomers are important materials in many engineering applications; consequently a wide variety 
of elastomeric materials is used in several products, e.g., tires, springs, dampers, gaskets, bearings, 
oil seals, etc. Fracture mechanics in elastomers is of great importance in the design process and it is 
fundamental in some applications such as adhesion technology, elastomers wear, etc.  
Dynamic crack propagation in rubber-like materials has been investigated both theoretically and 
experimentally but the field is relatively undeveloped compared with brittle materials [8, 12, 21, 28]. 
Generally, the dynamic fracture in rubber shows remarkable deviation from the dynamic fracture 
theories for brittle materials, e.g. the cracks propagate at speeds greater than the speed of sound 
without branching and at high stretch levels oscillatory crack propagation results. 
The fracture energy of rubber is the sum of different contributions [20, 22, 23]: the surface energy 
required to create new crack surfaces, the energy dissipated in the viscoelastic processes around the 
crack tip, and the inertia effects that contribute in the case of dynamic fracture. Furthermore, the 
separation process is accompanied with a viscoelastic dissipation process to which takes place in the 
crack tip vicinity [2].  
The theoretical treatment of the problem of crack propagation in rubber-like solid reveals that the 
region around the crack tip can be divided into three different zones, determined by the relaxation 
spectrum, as shown in Fig. 1a [10]. These regions are: glassy region occurs at the closest to the 
crack tip, rubbery region occurs far from the crack tip, the viscous dissipation region that is located 
between these two regions. Depending on the relaxation spectrum and crack propagation velocity, 
the glassy and viscous dissipation regions may vanish, e.g. in the case of carbon-filled natural 
rubber glassy zones are not expected to exist, while viscous dissipation is expected. 
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Figure 1. The fracture processes around a crack propagating in rubber with a speed cv : a the different zones 
around the propagating crack tip determined by the viscoelastic behavior; and b the cohesive process zone 
and its traction-separation law ( δ−T ). IcG  is the fracture energy, czl  is the length of the cohesive zone, cδ is 
the critical displacement, fδ  is the failure displacement, and cσ  is the cohesive strength.  
One way to give a quantitative description of the contribution from the different fracture-associated 
processes is to use the cohesive zone theories. The cohesive zone modeling approach was originally 
proposed by Dugdale and Barenblatt [9, 11] to simulate the fracture process and was later 
implemented in a finite element environment [3]. A cohesive zone model describes the fracture 
process in the crack tip vicinity as a gradual surface separation process, such that the normal and 
shear forces at the interface resist separation and relative sliding. Several cohesive zone models 
have been introduced in the literature including rate-dependent and independent models and have 
been successfully used in both quasi-static and dynamic crack growth problems [1, 4, 13, 27]. 
The purpose of the present study is to model as well as to analyze the dynamic crack propagation in 
rubber. The problem of a suddenly initiated crack at the center of stretched sheet is analyzed using 
finite element method, and plane stress conditions are assumed to prevail. A nonlinear finite element 
analysis using implicit time integration scheme is used. The bulk material behavior is described by 
finite-viscoelasticity theory. The fracture separation process is modeled using a cohesive zone 
model with a bilinear traction-separation law. A parametric study is performed over a range of 
cohesive zone properties, i.e. cohesive strength and energy, and the steady crack propagation 
velocity is calculated and compared with crack speeds obtained in experiments. The problem is 
formulated in Section 2, and the numerical analysis is provided in Section 3. A discussion is 
presented in Section 4. 
 
2. Problem formulation 
 
2.1. Geometry 
 
Consider a thin rectangular sheet of rubber with the initial dimensions 02W  (width), 02H  (height), 
and 0B  (thickness), as shown in Fig. 2a. The sheet is initially unloaded, and the Cartesian material 
coordinates IX , 3,2,1=I , are used to describe the reference configuration. Plane stress conditions 
are assumed to prevail, such that the 21 XX − -plane is the plane of stresses. The sheet is first 
subjected to a stretch λ  in the 2X -direction at low rate of loading, such that inertia effects are 
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ignored. The deformation is assumed to be defined by the motion ( )t,Xχx = , where the Cartesian 
coordinates ix , 3,2,1=i , are defined in the deformed configuration, as shown in Fig. 2b. The 
position vectors in material and spatial coordinates are defined as iiX eX =  and iix ex = , 
respectively, such that the two coordinates possess the same origin and the same set of orthogonal 
basis vectors ie , 3,2,1=i . The displacement vector is defined as Xxu −= , and the first 
Piola-Kirchhoff traction vector T  is defined as force per unit undeformed area. After the required 
extension has been achieved, a crack of length a2  is initiated at the center of the deformed sheet 
parallel to 1x -direction. Thereafter, the crack propagates dynamically and symmetrically along a 
path defined by 02 =x . 

  

(a) (b) 
Figure 2. The geometry of the thin rectangular rubber sheet: a the reference configuration; and b the current 

configuration. 
Considering the symmetry of loading and geometry, only a half portion of the sheet, defined by 

01 ≥X , is modeled. The crack propagation is then studied over a length of aΔ  in the deformed 
configuration. The time scale is defined according to the following: the sheet is loaded 
quasi-statically for 0<t , and at 0=t , the crack is initiated. The boundary conditions applied for 
the whole period of time are defined according to 
 ,0 ,0 :0 211 === TuX  (1) 
 ,0 : 2101 === TTWX  (2) 
 ( ) .1 ,0 : 02102 HuuHX ⋅−±==±= λ  (3) 
The initial crack is located at 010 aX ≤≤ , 02 =X . Note that a  pertains to the deformed 
configuration, while 0a  pertains to the reference configuration. The crack starts to propagate 
immediately after the initiation process, i.e. for 0>t . The propagation process is determined by a 
cohesive law. Assuming that the crack tip position is defined as 1tiptip ex x= , the crack tip velocity is 
then determined as 

 
dt

dx
v tip

tip = , (4) 

implying that the crack propagates in the 1X -direction, i.e. 1tiptip ev v= and dtd / is the time 
derivative taken with respect to spatial coordinates. 
 
2.2. Constitutive models 
 
2.2.1. The finite-strain viscoelasticity model 
 
The mechanical behavior of rubber-like materials is characterized by finite elasticity theory, i.e. 
hyperelasticity, for the quasi-static response. Further, the dynamic response is often characterized by 
viscoelasticity theory. The finite-strain viscoelasticity implementation in ABAQUS [14] is based on 
a local additive split of the stress tensor into initial and non-equilibrium parts [15]. The initial part 
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follows the finite-strain constitutive equations while the non-equilibrium part determines the 
viscous response. 
Consider a deformation that is defined by the deformation gradient F  and the associated Jacobian 
J . The deformation gradient is decomposed into volume changing (dilatational) part I3/2J  and 
volume preserving (distortional) part FF 3/1J= . The initial free strain energy function, that 
determines the initial stress part, can be written in the decoupled form 
 ( ) ( )Fisovol Ψ+Ψ=Ψ J , (5) 
where ( )JvolΨ  is the volumetric part and ( )FisoΨ  is the isochoric part. The total strain energy, 
including the viscous response, can be written using a generalized Maxwell model (Prony series) as 
 ( ) ( ) ( ) ( )Fisovol Ψ⋅+Ψ⋅=Ψ tgJtk RR , (6) 
where ( )t kR  and ( )t gR  are the Prony series dimensionless relaxation moduli. 
In this context, an isotropic and incompressible hyperelastic material is considered, i.e. 1=J . 
Hence, the volumetric part of the strain energy function is then expressed in terms of a hydrostatic 
pressure p .  
 ( )1vol −=Ψ Jp , (7) 
The isochoric part of the strain energy function is defined by the Ogden model for incompressible 
materials [25], which reads 

 ( )3321
1

iso −++=Ψ ∑
=

ppp

M

p p

p ααα λλλ
α
μ

, (8) 

where the iλ , 3,2,1=i , are the principal stretches, pμ  and pα  are material parameters that 
fulfill the condition 0>ppαμ (no summation) and the shear modulus pμ  is defined by 

∑
=

=
M

p
pp

1

αμμ . 

Further, the volumetric response is assumed to be purely elastic such that the viscoelastic response 
is determined by the isochoric response, i.e. ( ) 1=t kR . The total strain energy function, including 
the viscoelastic response, can be written in the decoupled form 

 ( ) ( )∑
=

−−−=
N

i

tP
iR

iegtg
1

/11 τ , (9) 

where N , P
ik , P

ig  and iτ  are material constants. The model includes N  Maxwell elements, 
i.e. series combinations of spring and dash-pot. 
 
2.2.2. The cohesive zone model 
 
The constitutive response for the cohesive surface is modeled in terms of the relationship between 
the traction and the displacement jump across the surface. The traction-separation law (TSL) is a 
physically based or a phenomenological model that can be obtained from a free energy density 
function, φ , as 

 ( )
Δ

ΔTT
∂
∂

==
φ , (10) 

where T  is a first Piola-Kirchhoff traction vector, and Δ  is the displacement jump vector 
between two initially coincident points which are defined in three different directions the normal ( n ) 
direction, and the two shear directions ( s  and t ) with respect to the cohesive surface.  
In this work, a bilinear traction-separation law is used, and only the opening mode fracture (mode I) 
is considered. For this reason, only the constitutive behavior in the normal direction is controlled, 
see Fig. 3. The material parameters of the bilinear traction-separation law are nK  (the initial elastic 
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or penalty stiffness), c
nδ  (the critical normal separation), f

nδ  (the failure separation), and cσ  (the 
cohesive strength in the normal direction). 

 
Figure 3. The bilinear traction-separation law 

The cohesive element behavior in ABAQUS [14] is based on the characterization of the damage 
process as the degradation of the material stiffness. The initial behavior is assumed to be linear 
elastic and is active until damage is initiated. When damage is initiated, the material stiffness 
decreases and the rate of degradation is defined by the damage evolution law. A scalar damage 
variable, d , that determines the stiffness degradation, is used, which evolves monotonically from 0  
to 1, i.e. from an undamaged to a fully damaged state. The irreversible bilinear traction-separation 
law is then written as 

 ( )⎩
⎨
⎧

≥⋅−
≤

=
, if1
, if

c
nnnn

c
nnnn

n δδδ
δδδ

Kd
K

T , (11) 

where the linear elastic unloading behavior after damage onset is determined by the degraded 
stiffness ( ) nn 1 KdK ⋅−=′ . The damage variable, d , for linear softening is determined as 

 ( )
( )c

n
f
n

max
n

c
n

max
n

f
n

δδδ
δδδ

−
−

=d , (12) 

where max
nδ  is the maximum value of the displacement attained during the loading history, see Fig. 

3. A maximum nominal stress criterion is used to predict damage initiation, i.e. damage is assumed 
to be initiated when the maximum nominal stress reaches a critical level cn σ≥T . 
 
3. Numerical analysis 
 
3.1 Estimation of material parameters 
 
A carbon-black-filled natural rubber material is considered here and its physical and chemical 
properties are illustrated in [5, 10]. This material has been studied extensively [5-7].   
Experimental data from a uniaxial tensile test for the carbon-black filled natural rubber [3] has been 
used to estimate the parameters in the Ogden strain energy function. The Cauchy (true) stress, σ , 
in the uniaxial test is defined by 

 ( )( )pp

M

p
p

αα λλμσ 2/1

1

−

=

−= ∑ , (13) 

where λ  is the stretch in the uniaxial tension direction. Using a nonlinear least squares method, 
the Cauchy stress in Eq. (13) is fitted to the uniaxial tension data and two sets of parameters are 
found to be sufficient, see Fig. 3. The parameter values are shown in Table 1. 

Table 1. The Ogden strain energy function parameters ( 2=M ) 
p  [ ]MPa pμ  [ ]- pα

1 1.639 2.724
2 0.088 0.004

Free retraction test experimental data [5] is used to estimate the model parameters in the 
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viscoelasticity model. Maxwell model with one element has been used, i.e. 1=N . The relaxation 
time for rubber is experimentally found to be of the order of s 0.1  at ambient temperatures [19, 26], 
and therefore we assumed a relaxation time of s 0.11 =τ . (The viscoelastic response of the rubber 
material is much slower than the rapid processes that we are considering in the present dynamic 
crack propagation analysis, so the exact value of 1τ  is irrelevant.) The associated relative stiffness, 

pg1 , then has to be determined from the experimental data from the retraction tests. 

 
Figure 4. Comparison between the uniaxial true stress-stretch data (‘◦’) [5] and Ogden material model 

( 2=M ) 
In the free retraction experiment, we consider a thin rectangular strip of rubber with initial 
dimensions mm 2501 =L , mm 102 =L  and mm 5.03 =L , see Fig. 5a (i). The strip is stretched 
quasi-statically to a certain stretch, 0λ , and then one end is released as shown in Fig. 5a (ii). 
Consequently, the released end undergoes retraction at a relatively high speed which depends on the 
initially imposed stretch as well as the material parameters. 
(a) 

 

(b)

 
Figure 5. The free retraction experiment: a the geometry of the rubber specimen used in the free retraction 

experiments (i) the reference configuration; and (ii) the current configuration; b the predicted retraction 
speeds for different viscoelastic properties compared with the experimental data [7]. The dashed, full, and 

dotted lines represent different values of the relative stiffness ( ,7.0,0.01 =Pg and 9.0 ), respectively. 
The initial-boundary value problem for the free retraction experiment is analyzed using a 
two-dimensional plane stress finite element model. A nonlinear dynamic analysis, using an implicit 
time integration scheme, is performed using the finite element code ABAQUS [14], and the free 
edge steady retraction velocity, rv , is computed and fitted to the data from the retraction velocity 
tests, see Fig. 5(b) using different values of the relative stiffness, Pg1 . The parameter values 
obtained for the Maxwell model are shown in Table 2 below. 
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Table 2. Prony series coefficients 
i  P

ig  iτ

1 0.7 1.0
 
3.2 Numerical implementation 
 
The initial-boundary value problem described in Sec. 2 is numerically solved using the finite 
element code ABAQUS [14]. A nonlinear quasi-static analysis is used for the initial loading, and a 
nonlinear dynamic analysis, using implicit time integration, is used for the crack propagation 
analysis.  
The rubber material is modeled using finite-strain viscoelasticity as described in Sec. 2.2.1 and the 
material parameters in Tables 1 and 2 are used. 
The fracture separation process is modeled using the cohesive zone model that is described in Sec. 
2.2.2. The cohesive zone parameters, the cohesive strength and cohesive energy, are material 
parameters that determine the length of the process zone together with the other material properties 
[3, 17]. They are not easily measurable, and they are often estimated using experimental data of a 
known problem setup. The cohesive strength is directly related to the tensile strength of the material 
while the cohesive energy may be estimated on the basis of fracture mechanics experiments as the 
work needed for fracture. However, in such estimates, both the actual surface energy and additional 
dissipative work are included. In this work the cohesive energy is equal is assumed to be total 
fracture energy. The cohesive strength is chosen to be MPa 30c =σ  and then the experimental data 
are fitted using variable fracture energy. 
A high value of the initial stiffness nK  is often assumed in order to avoid ill-conditioning and to 
reduce the changes of the structure compliance due to the presence of the compliance of the 
cohesive elements. Therefore, the initial stiffness is assumed to be MPa 1067.2 6

n ×=K  such that 
a stiff behavior is obtained prior to damage initiation without risking the numerical instabilities. 
The geometry of the thin rectangular sheet in Fig. 2 is discretized, and a typical finite element mesh 
is shown in Fig. 6. Due to symmetry, only one half of the specimen is analyzed. The initial 
dimensions are taken as mm 750 =W , mm 50 =H , and mm 5.00 =B  [6]. The initial crack is 
assumed to be mm 102 0 =a , and the crack propagation is studied over a length of mm 50=Δa . 
Note that aΔ  pertains to the deformed configuration, while 0aΔ  pertains to the reference 
configuration. The 4-node bilinear plane stress element CPS4 and 4-node two-dimensional linear 
cohesive element COH2D4 are used in the discretisation. The cohesive elements are inserted along 
the crack propagation path, i.e. along 02 =X , and the bulk elements are defined elsewhere. The top 
and bottom faces of the cohesive elements are tied to the adjacent bulk plane stress elements, 
implying that three cohesive elements are attached to two bulk elements, see Fig. 6b. The cohesive 
elements are modeled with zero initial thickness in the reference configuration, and consequently 
the top and bottom faces and nodes coincide. The mesh comprises 27207 elements, of which 25506 
are bulk elements and 1701 are cohesive elements. A cohesive element length of mm 025.0ce =l  is 
used. 
The element death/birth technique is adopted to model crack initiation. The initial crack domain is 
discetized using cohesive elements, and therefore they have been removed at the instant of crack 
initiation, i.e. at 0=t . 
The problem is solved for different values of the initial stretching, i.e. [ ]0.4,0.2=λ . The relative 
normal separation displacement, 2uΔ , between each pair of initially coincident nodes in the 
interface ( 02 =X ) is computed and recorded during the analysis. The crack tip position, tipx , is 
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defined by c
n2 δ=Δu , and the crack tip velocity is determined using forward differencing of Eq. (14) 

of the smoothed cohesive crack tip position data, tipx , (using Savitzky-Golay smoothing filter). 

 
n

nn
n

t
xx

v
Δ
−

=
+

tip
1

tip
tip , (14) 

where indices n  and 1+n  denote variable values at time instants nt  and 1+nt , respectively, and 

nnn ttt −=Δ +1  is the time increment. Further, the steady crack velocity, cv , is computed by taking 
the average velocity over the steady propagation period. 

(a) (b) 
Figure 6. The finite element mesh of the thin rectangular sheet of rubber: a the mesh of the whole geometry; 
and b mesh details along the middle of the sheet where the cohesive elements are inserted along the crack 

propagation path 
 
3.3 Numerical results 
 
Several analyses have been performed for different combinations of stretch and cohesive zone 
properties. The cohesive crack tip position and velocity, as well as the steady crack propagation 
velocity, have been obtained for all the combinations.  
Typical crack propagation results, including the cohesive crack tip position and velocity results, are 
shown in Figs. 8a and 8b. At 0=t , the crack is initiated such that it propagates immediately after 
the initiation, i.e. typically within less than ms 1 , at low velocity and continues propagating with a 
slow acceleration, see in Fig. 8b. After approximately ms 5.1 , the crack velocity approaches a 
transition region wherein the crack starts to accelerate rapidly and the velocity increases to high 
velocity levels. Then, after about ms 83.1 , the crack tip velocity reaches a plateau region, where 
steady crack propagation occurs. Different cohesive properties virtually yield the same type of 
behavior. Stationary crack propagation was obtained for all sets of cohesive properties, provided 
that the crack was able to get started. There was a threshold stretch, thλ , below which the initial 
crack was immediately arrested and no propagation occurred. 
(a) 

 

(b)

 
Figure 8. Crack propagation results for 0.4=λ , MPa 60c =σ  and 2

Ic KJ/m 20=G : a crack tip position 

tipx  vs time t ;  and b crack tip velocity tipv  vs time t . 
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The numerical predictions of the steady crack propagation velocity are compared with the 
experimental data [6], as shown in Fig. 9. The numerical threshold stretch differs for the different 
cohesive properties, such that its minimum value, 0.3th =λ , occurs for MPa 60c =σ  and 

2
Ic KJ/m 20=G . For low stretches, the model clearly overestimates the crack speeds from the 

experimental data. However, by using different cohesive properties, the numerical model is able to 
predict the crack speeds from the experiments, at least in the high stretch regime ( 5.3≥λ ). 

 
Figure 9. Comparison between numerical predictions of the steady crack propagation velocity and 

experimental data ('ο') [4]. The black, red and blue lines indicate simulations with the cohesive strengths 
MPa 90,60,30 , respectively, and the full and dashed lines indicate simulations with cohesive energies 

2KJ/m 40,20 , respectively. 
 
4. Discussion and concluding remarks 
 
In the present analysis, the contribution from viscoelastic dissipation in the bulk material to the total 
work of fracture is negligible. This is due to the fact that the crack propagation process is very rapid 
in comparison with the relaxation time of the rubber material. 
In the analyses, the main properties of the cohesive law, i.e. the cohesive energy and the cohesive 
strength, were varied to enable a prediction of the experimentally obtained crack speeds. The 
analyses indicate that the effective fracture energy of the rubber material at hand is to be found 
roughly in the range 2KJ/m 4020 − , and the cohesive strength is expected to be approximately 

MPa 9030 − . We emphasize that this estimate of the fracture energy should not be taken as the 
actual surface energy required to create new crack surface at the very crack tip. Rather, this estimate 
should be taken as a value that contains the actual surface energy but also significant amounts of 
dissipation associated with damage processes in the vicinity of the crack tip. Strictly speaking, this 
would be dissipation that takes place in the bulk material surrounding the crack tip, which is not 
really accounted for by the continuum viscoelasticity model adopted for the bulk behavior. 
Few experimental investigations have been concerned with characterization of high speed fracture 
of rubber, in which crack speed variation with fracture toughness has been experimentally measured 
under high strain or loading rate. Typical fracture toughness has been reported to be in the range 

2KJ/m 3007 −  for the crack speed in the range m/s 305.0 −  using pure shear and tensile strip 
specimens [12, 24]. It is also shown that a low fracture toughness of 2KJ/m 30  can be measured at 
a crack speed of m/s 30 .  Thus, the effective fracture energy reported in the literature shows good 
agreement with the values attained here. 
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