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Abstract  The interaction between an annular crack and the interface is of practical significance. The 
interface, which is imperfect with the assumption that it is mechanically compliant and magnetoelectrically 
weakly conducting. For a mechanically compliant interface tractions are continuous but displacements are 
discontinuous across the imperfect interface. For a magnetoelectrically weakly conducting interface the 
normal electric displacement and magnetic induction are continuous but the electric and magnetic potentials 
are discontinuous across the interface. Such a problem is investigated by the method of singular integral 
equation in the present work. The field intensity factors and energy release rate are derived. Numerical 
results reveal the effects of electric or magnetic loadings, material parameters and interfacial imperfection on 
crack propagation and growth. The results seem useful for design of the magnetoelectroelastic composite 
structures and devices of high performance.  
 
Keywords  Annular crack, Imperfect interface, Energy release rate, Magnetoelectroelastic materials, 
Fracture mechanics 
 
1. Introduction 
 
Magnetoelectroelastic materials, which are composed of a piezoelectric and piezomagnetic phase, 
not only have original piezoelectric and piezomagnetic properties but also exhibit a remarkable 
magneto-electric coupling effect that is not present in the constituents. Such composites have found 
increasing applications in several engineering fields such as magnetic field probes, electronic 
packaging, hydrophones, medical ultrasonic imaging and in general as transducers, sensors and 
actuators. Micromechanics modeling to predict and estimate the material properties of 
piezoelectric/piezomagnetic composites was presented [1-3]. 
 
These magnetoelectroelastic materials are generally brittle; therefore cracks inevitably form during 
the manufacturing process and subsequent handling. For that reason, it is of great importance to 
study the fracture behavior of such composites and its influence on the coupled response. Recently, 
research on fracture mechanics of magnetoelectroelastic materials has drawn increased interest. 
Most of the achievements are made on the anti-plane and in-plane crack problem [4-8]. For the 
axisymmetric crack in magnetoelectroelastic materials, some progress has also been made. Studies 
related to penny-shaped or annular cracks can be found in the literature [9-11]. 
 
When two dissimilar materials bonded together, it is difficult to guarantee them to be perfectly 
bonded. Some interfacial models, i.e. spring-like model, are presented. Meguid and Wang [12] dealt 
with the interaction of crack and imperfect interface when dynamic antiplane shear waves are 
applied. a crack situated at the imperfect interface has been considered by Lenci [13], who found 
only the logarithmic stress singularity near the crack tips. Instead of the usual traction-free crack 
surface condition, Udea et al. [14] applied the spring-like imperfect interface condition to 
reconsider the corresponding antiplane shear problem, and found that the stress singularity at the 
crack tips is no longer an inverse square-root singularity, but a singularity of power law governed 
by the interface parameters. Zhong et al. [15] investigated the elastostatic problem of a mode-I crack 
embedded in a bimaterial with an imperfect interface. 
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This paper aims at analyzing the interaction of an annular crack and an imperfect interface. The 
interface, which is imperfect with the assumption that it is mechanically compliant and 
magnetoelectrically weakly conducting. For a mechanically compliant interface tractions are 
continuous but displacements are discontinuous across the imperfect interface. For a 
magnetoelectrically weakly conducting interface the normal electric displacement and magnetic 
induction are continuous but the electric and magnetic potentials are discontinuous across the 
interface. Using the Hankel transform technique, the associated mixed-boundary value problem is 
reduced to a singular integral equation. Numerical results are presented. The influences of 
interfacial imperfection on energy release rates near the crack tips are analyzed in detail. 
 
2. Formulation of the problem 
 
As shown in Fig. 1, two dissimilar magnetoelectroelastic materials bonded with an imperfect 
interface. For convenience, they are marked with material I and material II, which occupy the 
region 2 1h z h− < <  and region 1 1 3h z h h< < +  respectively. An annular crack with the outer radius 
b and inner radius a perpendicular to the poling axis is situated in the magnetoelectroelastic material 
I and occupies the region a r b≤ ≤ , 0z = . And the crack width c is introduced with .c b a= −  
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Configuration of the annular and imperfect interface in bonded magnetoelectroelastic layers 
 
The boundary conditions for the magnetoelectrically impermeable annular crack and mechanically 
compliant and magnetoelectrically weakly conducting interface conditions are set as 

 ( ) ( ) ( ) ( ) ( )1 2
1,0 ,0 ,rzI rzIr r p rσ σ= = ( ) ( ) ( ) ( ) ( )1 2

2,0 ,0 ,zzI zzIr r p rσ σ= = ( )a r b< <  (1) 

 ( ) ( ) ( ) ( ) ( )1 2
3,0 ,0 ,zI zID r D r p r= = ( ) ( ) ( ) ( ) ( )1 2

4,0 ,0 ,zI zIB r B r p r= = ( )a r b< <  (2) 

 ( ) ( ) ( ) ( )1 2,0 ,0 ,rI rIu r u r= ( ) ( ) ( ) ( )1 2,0 ,0 ,zI zIu r u r= ( )0 ,r a b r≤ ≤ ≤ < ∞  (3) 

 ( ) ( ) ( ) ( )1 2,0 ,0 ,I Ir rφ φ= ( ) ( ) ( ) ( )1 2,0 ,0 ,I Ir rψ ψ= ( )0 ,r a b r≤ ≤ ≤ < ∞  (4) 

 ( ) ( ) ( ) ( )1 2,0 ,0 ,rzI rzIr rσ σ= ( ) ( ) ( ) ( )1 2,0 ,0 ,zzI zzIr rσ σ= ( )0 ,r a b r≤ ≤ ≤ < ∞  (5) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2,0 ,0 , ,0 ,0zI zI zI zID r D r B r B r= = , ( )0 ,r a b r≤ ≤ ≤ < ∞  (6) 

 ( ) ( )2
2, 0,rzI r hσ − = ( ) ( )2

2, 0,zzI r hσ − = ( ) ( ) ( ) ( )2 2
2 2, 0, , 0zI zID r h B r h− = − = ( )0 r≤ < ∞  (7) 

 ( ) ( ) ( )1
1 1, , ,rzI rzIIr h r hσ σ= ( ) ( ) ( )1

1 1, , ,zzI zzIIr h r hσ σ=  (8) 

 ( ) ( ) ( )1
1 1, , ,zI zIID r h D r h= ( ) ( ) ( )1

1 1, , ,zI zIIB r h B r h= ( )0 r≤ < ∞  (9) 

 ( ) ( ) ( ) ( )1
1 1 1 1, , , ,rI rII rzIIu r h u r h r hβ σ− = ( ) ( ) ( ) ( )1

1 1 2 1, , , ,zI zII zzIIu r h u r h r hβ σ− =  (10) 

r 

z
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 ( ) ( ) ( ) ( )1
1 1 3 1, , , ,rI rII zIIr h r h D r hφ φ β− = ( ) ( ) ( ) ( )1

1 1 4 1, , , ,rI rII zIIr h r h B r hψ ψ β− = ( )0 r≤ < ∞  (11) 

 ( )1 3, 0,rzII r h hσ + = ( )1 3, 0,zzII r h hσ + = ( ) ( )1 3 1 3, 0, , 0zII zIID r h h B r h h+ = + = ( )0 r≤ < ∞  (12) 
where the superscripts (1) and (2) denote the upper and lower of the magnetoelectroelastic material 
I, respectively; ( )1p r , ( )2p r , ( )3p r  and ( )4p r  are the given amplitude of the applied 
loadings. 1β , 2β , 3β  and 4β  are interface parameters, respectively. 
 
For the axisymmtric problem, the government equations of magnetoelectroelastic material are 

 ( ) ( ) ( )
2 2 2 2 2

11 44 13 44 31 15 31 152 2 2

1 1 0,r r r zu u u uc c c c e e f f
r r r r z r z r z r z

φ ψ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ − + + + + + + + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (13) 

 
( )

2 2 2

13 44 44 332 2

2 2 2 2

15 33 15 332 2 2 2

1 1

1 1 0,

r r z z zu u u u uc c c c
r z r z r r r z

e e f f
r r r z r r r z
φ φ φ ψ ψ ψ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (14) 

 
( )

2 2 2

15 31 15 332 2

2 2 2 2

11 33 11 332 2 2 2

1 1

1 1 0,

r r z z zu u u u ue e e e
r z r z r r r z

g g
r r r z r r r z
φ φ φ ψ ψ ψε ε

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
− + − − + − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (15) 

 
( )

2 2 2

15 31 15 332 2

2 2 2 2

11 33 11 332 2 2 2

1 1

1 1 0,

r r z z zu u u u uf f f f
r z r z r r r z

g g
r r r z r r r z
φ φ φ ψ ψ ψμ μ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
− + − − + − =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (16) 

The generally solutions of the equations above mentioned are 

 ( ) ( ) ( ) ( )
8

1 10
1

, exp ,r j j j
j

u r z a z A J r dρλ ρ ρ ρ
∞

=

=∑∫  (17) 

 ( ) ( ) ( ) ( )
8

2 00
1

, exp ,z j j j
j

u r z a z A J r dρλ ρ ρ ρ
∞

=

=∑∫  (18) 

 ( ) ( ) ( ) ( )
8

3 00
1

, exp ,j j j
j

r z a z A J r dφ ρλ ρ ρ ρ
∞

=

=∑∫  (19) 

 ( ) ( ) ( ) ( )
8

4 00
1

, exp ,j j j
j

r z a z A J r dψ ρλ ρ ρ ρ
∞

=

=∑∫  (20) 

where ( )( )1, 2, ,8jA jρ = L  are unknown functions to be determined and ( )0,1iJ i = are i th order 

Bessel functions of the first kind. The constants { }1 2 3, ,j j ja a a  and parameters jλ  are constant 
related to material parameters.  
 
3. The derivation of the integral equations 
 
A set of new unknown functions are now introduced 

 ( ) ( ) ( ) ( ) ( ){ }1 2
1

1 ,0 ,0 ,rI rId r ru r ru r
r r
∂

= −
∂

 (21) 
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 ( ) ( ) ( ) ( ) ( ){ }1 2
2 ,0 ,0 ,zI zId r u r u r

r
∂

= −
∂

 (22) 

 ( ) ( ) ( ) ( ) ( ){ }1 2
3 ,0 ,0 ,I Id r r r

r
φ φ∂

= −
∂

 (23) 

 ( ) ( ) ( ) ( ) ( ){ }1 2
4 ,0 ,0 .I Id r r r

r
ψ ψ∂

= −
∂

 (24) 

In the annular crack shown in Fig. 1, physical considerations require that 
 ( ) ( ) ( ) ( )1 2,0 ,0 0r ru r u r⎡ ⎤− →⎣ ⎦ , for ,r a b→ , (25) 

 ( ) ( ) ( ) ( )1 2,0 ,0 0z zu r u r⎡ ⎤− →⎣ ⎦ , for ,r a b→ , (26) 

 ( ) ( ) ( ) ( )1 2,0 ,0 0I Ir rφ φ⎡ ⎤− →⎣ ⎦  for ,r a b→ . (27) 

 ( ) ( ) ( ) ( )1 2,0 ,0 0I Ir rφ φ⎡ ⎤− →⎣ ⎦  for ,r a b→ . (28) 

Therefore, the unknown function defined by Eq. (10) must satisfy the following conditions 

 ( )1 0,
b

a
rd r dr =∫  (29) 

 ( )2 0,
b

a
d r dr =∫  (30) 

 ( )3 0,
b

a
d r dr =∫  (31) 

 ( )4 0.
b

a
d r dr =∫  (32) 

 
Substitute Eqs. (17)-(20) into boundary conditions Eqs. (1)-(12) and using Eqs. (21)-(24), one 
obtains 

 ( ) ( ) ( )1 1 1 ,
b b

a a
s ds s ds r

s rπ π
+ =

−∫ ∫M F QF Γ  (33) 

where 

 

11

22 23 24

32 33 34

42 43 44

0 0 0
0

,
0
0

M
M M M
M M M
M M M

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M  (34) 

 ( ) ( ) ( )10 010
,s r s dπ ρ ρ ρ ρ ρ

∞
⎡ ⎤= + −⎣ ⎦∫Q κM J K M J  (35) 

 ( )lim ,ij ijM K
ρ

ρ
→∞

=  (36) 

with ( )ijK ρ  can be found in Appendix A. And 

 ( ) ( ) ( ) ( )11 22 22 22, , , , , , , ,diag r s r s r s r sκ κ κ κ= ⎡ ⎤⎣ ⎦κ  (37) 

 ( ) ( )1
11 2 2

2 , 1, ,
rM r s

r s
s r s r

κ
⎡ ⎤

= −⎢ ⎥− −⎣ ⎦
 (38) 

 ( ) ( )2
22 2 2

2 , 1, ,
sM r s

r s
s r s r

κ
⎡ ⎤

= −⎢ ⎥− −⎣ ⎦
 (39) 

and 
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 ( )
( )

( ) ( )
1 2 2 2

2 2

, ,
,

, ,

s E s r s r
rM r s
s s rE r s K r s s r
r r

⎧ <⎪⎪= ⎨
−⎪ − >

⎪⎩

 (40) 

 ( ) ( ) ( )

( )

2 2

2

, ,
,

, .

r s rE s r K s r s r
M r s s rs

E r s s r

⎧ −
+ <⎪= ⎨

⎪ >⎩

 (41) 

Introducing two non-dimensional variables η  and ξ  
 ( ) ( )2 2,s b a b aη= − + +  (42) 

 ( ) ( )2 2.r b a b aξ= − + +  (43) 
Eq. (33) becomes 

 ( ) ( ) ( ) ( )
1 1

1 1

1 , ,d d
η

η ξ η η η ξ
π η ξ π− −

+ =
−∫ ∫

G
Q G LΜ  (44) 

where 

 ( ) ,
2 2

b a b aη η− +⎛ ⎞= +⎜ ⎟
⎝ ⎠

G F  (45) 

 ( ), , ,
2 2 2 2 2

b a b a b a b a b aη ξ η ξ− − + − +⎛ ⎞= + +⎜ ⎟
⎝ ⎠

Q Q  (46) 

 ( ) .
2 2

b a b aξ ξ− +⎛ ⎞= Γ +⎜ ⎟
⎝ ⎠

L  (47) 

 
4. The solution of integral equations 
 
So far, the Cauchy singular integral Eq. (44) and the single-valued conditions Eqs. (29)-(32) have 
been derived. By using the numerical method of Erdogan and Gupta [16], a system of linear 
algebraic equations can be obtained 

 

( ) ( ) ( )
1

1 , ,
n

l m l m
l l mn

η ξ η ξ
η ξ=

⎛ ⎞
+ =⎜ ⎟−⎝ ⎠

∑ Q R LΜ  (48) 

 ( )
1

1 ,1,1,1 0,
2 2

n

l l
l

b a b adiag
n

η η
=

⎛ − + ⎞⎛ ⎞ + =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ R  (49) 

where ( ) ( )21 ,η η η= −R G  and n is the number of the discrete points of ( )lηR  between -1 and 
+1. The discrete values of mξ  and lη  are the roots of the Chebyshev polynomials of the first and 
second kind, respectively: 
 ( )cos , 1, 2, 1,m m n m nξ π= = −L  (50) 

 ( )cos 2 1 2 , 1,2, .l l n l nη π= − =⎡ ⎤⎣ ⎦ L  (51) 
 
One may solve Eqs. (48) and (49) numerically to get the solutions of ( )lηR , which can be further 
used to determine the stress intensity factor (SIF). 
 
5. Field intensity factors and energy release rates  
 



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-6- 
 

The field intensity factors (FIFs) including mode-I and mode-II stress intensity factors (SIFs) and 
electric displacement intensity factor (EDIF), which characterize magnitudes of stress, electric 
displacement respectively, of the outer and inner crack tips can be deduced 

 

{ } ( ) ( )II I D B 2 1
T

b b b b bK K K K b aπ= = − −K RΜ  (52) 
and 

 { } ( ) ( )II Ia Da Ba 2 1
T

a aK K K K b aπ= = − −K RΜ  (53) 
 
The energy release rates (ERRs) of the outer and inner crack tips can be derived as 

 ( )T 11 , ,
4

G b aυ υ υ υ−= =K KΜ   (54) 

 
6. Numerical results  
 
For the numerical examples, magnetoelectroelastic composite BaTiO3-CoFe2O4 are used as 
materials I and II. For simplicity, only the loading case of ( ) { }T

0 0 00r D BσΓ = − − −  is 
considered. Also, 0D  and 0B  are determined by the load combination parameters 

( )0 33 0 33D D c eλ σ=  and ( )0 33 0 33B D c fλ σ= . The numerical results are plotted in Figs. 2-5, where 

ERRs, bG  and aG , are normalized by 0G , which can be expressed as 

 2
0 22 0 ,

8
G cπ σ= Λ  (55) 

where 22Λ  is the element of matrix Λ , and 
 1.−= MΛ  (56) 
 
Figs. 2 and 3 show the effects of 1β  and 2β  on the normalized ERRs of the outer and inner 
crack-tips. From Fig. 2, it is clear that the normalized ERRs increase with increasing 1β . Similar 
phenomena can be observe in Fig. 3. This means that increasing 1β  and 2β  will promote the crack 
propagation or growth.  
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Figure 2. The effect of 1β  on the normalized ERRs of the outer and inner crack tips of an annular crack 
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Figure 3. The effect of 2β  on the normalized ERRs of the outer and inner crack tips of an annular crack 

 
The effects of 3β  and 4β  on the normalized ERRs are plotted in Figs. 4 and 5. From these figures, one 
knows that the normalized ERRs are almost independence of 3β  and 4β . 
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Figure 4. The effect of 3β  on the normalized ERRs of the outer and inner crack tips of an annular crack 
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Figure 5. The effect of 4β  on the normalized ERRs of the outer and inner crack tips of an annular crack 
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From Figs. 2-5, one can also know that the fracture parameters ERR of the inner crack tip of the 
annular crack are always larger than those of the outer one. 
 
7. Conclusions 
 
In this paper, the interaction of an annular crack and an imperfect interface in bonded 
magnetoelectroelastic layers is investigated. The interface, which is imperfect with the assumption 
that it is mechanically compliant and magnetoelectrically weakly conducting. Using the Hankel 
transform technique, the associated mixed-boundary value problem is reduced to a singular integral 
equation, which are further reduced to a system of algebraic equations. Finally, the field intensity 
factor and energy release rate are determined and numerically solved. The following conclusions 
may be drawn: 
 
(i) Different interfacial parameters have different influences on the propagation and growth of the 
annular crack. Increasing 1β  and 2β  can promote the crack propagation or growth. However, the 
effects of 3β  and 4β  on energy release rates are very small. 
 
(ii) The energy release rates of the inner crack tip of the annular crack are always larger than those 
of the outer one. 
 
Appendix A 
 
The matrix ( )ρK  can be expressed as 

 ( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

8 8 8 8
17 21 17 22 17 23 17 24

1 1 1 1

8 8 8 8
18 21 18 22 18 23 18 24

1 1 1 1

8 8 8
19 21 19 22 19 23 19 24

1 1 1

1

j j j j j j j j

j j j j

j j j j j j j j

j j j j

j j j j j j j j

j j j j

H H H H

H H H H

H H H H

ρ ρ ρ ρ
ρ ρ ρ ρ

ρ ρ ρ ρ
ρ ρ ρ ρ

ρ
ρ ρ ρ ρ ρ

ρ ρ ρ ρ

= = = =

= = = =

= = = =

Δ Δ Δ Δ
− − −

Δ Δ Δ Δ

Δ Δ Δ Δ
− − −

Δ Δ Δ Δ
=

Δ Δ Δ Δ

Δ Δ Δ Δ

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑
K

( )
( )

( )
( )

( )
( )

( )
( )

8

1

8 8 8 8
20 21 20 22 20 23 20 24

1 1 1 1

,

j j j j j j j j

j j j j

H H H Hρ ρ ρ ρ
ρ ρ ρ ρ= = = =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

Δ Δ Δ Δ⎢ ⎥
⎢ ⎥Δ Δ Δ Δ⎣ ⎦

∑

∑ ∑ ∑ ∑

  

where ( )ρΔ  is the determinant of the coefficient matrix H , whose elements can be expressed as 

ijH  with i th row and j th column; ( )( )21, 22, 23, 24kj kρΔ =  are, respectively, the 
corresponding algebra cofactors. The components of H  are given by 
 ( ) ( )( ) ( ) ( )1 44 1 44 2 15 3 15 4 1 3 1 8 1 16exp , 0, 0,j II jII jII II jII II jII II jII jII j jH c a c a e a f a h h H Hλ ρλ + += − − − + = =  

 ( ) ( )( ) ( ) ( )2 13 1 33 2 33 3 33 4 1 3 2 8 2 16exp , 0, 0,j II jII II jII jII II jII jII II jII jII jII j jH c a c a e a f a h h H Hλ λ λ ρλ + += + + + + = =  

 ( ) ( )( ) ( ) ( )3 31 1 33 2 33 3 33 4 1 3 3 8 3 16exp , 0, 0,j II jII II jII jII II jII jII II jII jII jII j jH e a e a a g a h h H Hλ ε λ λ ρλ + += + − − + = =  

( ) ( )( ) ( ) ( )4 31 1 33 2 33 3 33 4 1 3 4 8 4 16exp , 0, 0,j II jII II jII jII II jII jII II jII jII jII j jH f a f a g a a h h H Hλ λ μ λ ρλ + += + − − + = =

 ( ) ( ) ( ) ( )5 44 1 44 2 15 3 15 4 25 8 5 160, 0, exp ,j I jI jI I jI I jI I jI jIj jH H H c a c a e a f a hλ ρλ+ += = = − − − −  

 ( ) ( ) ( ) ( )6 13 1 33 2 33 3 33 4 26 8 6 160, 0, exp ,j I jI I jI jI I jI jI I jI jI jIIj jH H H c a c a e a f a hλ λ λ ρλ+ += = = + + + −  
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 ( ) ( ) ( ) ( )7 31 1 33 2 33 3 33 4 27 8 7 160, 0, exp ,j I jI I jI jI I jI jI I jI jI jIj jH H H e a e a a g a hλ ε λ λ ρλ+ += = = + − − −  

 ( ) ( ) ( ) ( )8 31 1 33 2 33 3 33 4 28 8 8 160, 0, exp ,j I jI I jI jI I jI jI I jI jI jIj jH H H f a f a g a a hλ λ μ λ ρλ+ += = = + − − −  

 ( ) ( )9 44 1 44 2 15 3 15 4 1exp ,j II jII jII II jII II jII II jII jIIH c a c a e a f a hλ ρλ= − − −  

 ( ) ( ) ( ) ( )44 1 44 2 15 3 15 4 19 8 9 16exp , 0,I jI jI I jI I jI I jI jIj jH c a c a e a f a h Hλ ρλ+ += − − − − =  

 ( ) ( )10 13 1 33 2 33 3 33 4 1exp ,j II jII II jII jII II jII jII II jII jII jIIH c a c a e a f a hλ λ λ ρλ= + + +  

 ( ) ( ) ( ) ( )13 1 33 2 33 3 33 4 110 8 10 16exp , 0,I jI I jI jI I jI jI I jI jI jIj jH c a c a e a f a h Hλ λ λ ρλ+ += − + + + =  

 ( ) ( )11 31 1 33 2 33 3 33 4 1exp ,j II jII II jII jII II jII jII II jII jII jIIH e a e a a g a hλ ε λ λ ρλ= + − −  

 ( ) ( ) ( ) ( )31 1 33 2 33 3 33 4 111 8 11 16exp , 0,I jI I jI jI I jI jI I jI jI jIj jH e a e a a g a h Hλ ε λ λ ρλ+ += − + − − =  

 ( ) ( )12 31 1 33 2 33 3 33 4 1exp ,j II jII II jII jII II jII jII II jII jII jIIH f a f a g a a hλ λ μ λ ρλ= + − −  

 ( ) ( ) ( ) ( )31 1 33 2 33 3 33 4 112 8 12 16exp , 0,I jI I jI jI I jI jI I jI jI jIj jH f a f a g a a h Hλ λ μ λ ρλ+ += − + − − =  

 ( ) ( )13 1 1 44 1 44 2 15 3 15 4 1exp ,j jII II jII jII II jII II jII II jII jIIH a c a c a e a f a hρ β λ ρλ⎡ ⎤= − − − −⎣ ⎦  

 ( ) ( ) ( ) ( )1 113 8 13 16exp , 0,jI jIj jH a h Hρ ρλ+ += − =  

 ( ) ( )14 2 2 13 1 33 2 33 3 33 4 1exp ,j jII II jII II jII jII II jII jII II jII jII jIIH a c a c a e a f a hρ β λ λ λ ρλ⎡ ⎤= − + + +⎣ ⎦  

 ( ) ( ) ( ) ( )2 114 8 14 16exp , 0,jI jIj jH a h Hρ ρλ+ += − =  

 ( ) ( )15 3 3 31 1 33 2 33 3 33 4 1exp ,j jII II jII II jII jII II jII jII II jII jII jIIH a e a e a a g a hρ β λ ε λ λ ρλ⎡ ⎤= − + − −⎣ ⎦  

 ( ) ( ) ( ) ( )3 115 8 15 16exp , 0,jI jIj jH a h Hρ ρλ+ += − =  

 ( ) ( )16 4 4 31 1 33 2 33 3 33 4 1exp ,j jII II jII II jII jII II jII jII II jII jII jIIH a f a f a g a a hρ β λ λ μ λ ρλ⎡ ⎤= − + − −⎣ ⎦  

 ( ) ( ) ( ) ( )4 116 8 16 16exp , 0,jI jIj jH a h Hρ ρλ+ += − =  

 ( ) ( )17 44 1 44 2 15 3 15 417 80, ,j I jI jI I jI I jI I jIjH H c a c a e a f aλ+= = − − −  

 ( ) ( )44 1 44 2 15 3 15 417 16 ,I jI jI I jI I jI I jIjH c a c a e a f aλ+ = − − − −  

 ( ) ( )18 13 1 33 2 33 3 33 418 80, ,j I jI I jI jI I jI jI I jI jIjH H c a c a e a f aλ λ λ+= = + + +  

 ( ) ( )13 1 33 2 33 3 33 418 16 ,I jI I jI jI I jI jI I jI jIjH c a c a e a f aλ λ λ+ = − + + +  

 ( ) ( )19 31 1 33 2 33 3 33 419 80, ,j I jI I jI jI I jI jI I jI jIjH H e a e a a g aλ ε λ λ+= = + − −  

 ( ) ( )31 1 33 2 33 3 33 419 16 ,I jI I jI jI I jI jI I jI jIjH e a e a a g aλ ε λ λ+ = − + − −  

 ( ) ( )20 31 1 33 2 33 3 33 420 80, ,j I jI I jI jI I jI jI I jI jIjH H f a f a g a aλ λ μ λ+= = + − −  

 ( ) ( )31 1 33 2 33 3 33 420 16 ,I jI I jI jI I jI jI I jI jIjH f a f a g a aλ λ μ λ+ = − + − −  

 ( ) ( )21 1 121 8 21 160, , ,j jI jIj jH H a H aρ ρ+ += = = −  

 ( ) ( )22 2 222 8 22 160, , ,j jI jIj jH H a H aρ ρ+ += = = −  

 ( ) ( )23 3 323 8 23 160, , ,j jI jIj jH H a H aρ ρ+ += = = −  

 ( ) ( )24 4 424 8 24 160, , ,j jI jIj jH H a H aρ ρ+ += = = −  
where 1,2, ,8j = L . 
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