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Abstract This paper reports the authors’ recent work on mixed-mode fracture in fiber-reinforced laminated
composite beams and plates. The work considers the so-called one-dimensional fracture which propagates in
one-dimension and consists of only mode | and mode Il fracture modes. Fracture interfaces are assumed to
be either rigidly or cohesively bonded. Analytical theories are developed within the contexts of both classical
and first-order shear deformable laminated composite theories. When a rigid interface is assumed for brittle
fracture, there are two sets of orthogonal pure modes in classical theory, and there is only one set of
orthogonal pure modes in shear-deformable theory. A mixed-mode fracture is partitioned by using these
orthogonal pure modes. The classical and shear deformable partitions can be regarded as either lower or
upper bound partitions for 2D elasticity, and hence approximate 2D elasticity partition theories are developed
by ‘averaging’ the classical and shear deformable partitions. When cohesively bonded interfaces are assumed
for adhesively joined interfaces, the classical and shear deformable theories give the same pure modes.
Approximate partition theories are also developed for 2D elasticity. Numerical investigations demonstrate
excellent agreement with the corresponding analytical theories. Experimental data considered shows that the
failure locus is strongly linear.
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1. Introduction

Delamination is a major concern in the application of laminated composite materials. Although it
occurs often together with other fracture modes such as fiber breakage, matrix cracking and
intra-laminar cracking, pure delamination is always an important research topic which provides
insight and understanding of lamina interfacial mechanics, and it often occurs in one-dimensional
delamination. A delamination is called one-dimensional when its crack front propagates only in one
direction. Familiar examples are through-width delamination in laminated composite beams,
circular ring shape delamination in laminated composite plates and shells, etc., as shown in Fig. 1.
A distinct feature of one-dimensional delamination is that it usually consists of only the mode I and
mode Il fracture modes without any mode Ill. The study of one-dimensional delamination is of
great importance for several reasons. It is the most fundamental problem in the fracture mechanics
of materials. It is often used in experimental tests, such as the double cantilever beam (DCB),
end-loaded split (ELS) and end-notched flexure (ENF) tests, to obtain the critical energy release
rate (ERR) or toughness of a lamina interface in either pure mode | or mode Il delamination. In the
case of a mixed mode, it is often used to investigate delamination propagation criteria. Moreover,
many practical cases of delamination in structures made of fiber-reinforced laminated composites
can be approximated as one-dimensional. For example, the separation of stiffeners and skins in
stiffened plate or shell panels made of laminated composite materials can be approximated as
one-dimensional through-width delamination, and the separation of two material layers in laminated
composite plates and shells in a drilling process can be approximated as one-dimensional circular
ring-type delamination, etc.

Because of its importance, one-dimensional delamination has attracted the attention of many
researchers including many of the world leaders in the areas of fracture mechanics and composite
materials. The primary goal is to develop analytical theories to determine pure delamination modes
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Figure 1. Some examples of one-dimensional fracture.

and then to partition a mixed mode into pure modes. Delamination propagation criteria can then be
established by using the partition together with experimental data. The through-width delamination
in a DCB made of isotropic material with rigidly bonded interface can be considered to be the
‘simplest” one-dimensional delamination. Although it seems to be a straightforward matter to
determine the pure modes and to partition a mixed mode, it has been proved to be an extremely
complex and sophisticated problem. There has been a lot of confusion on the matter during the last
25 years. Ref. [1] may be the earliest work on the ‘simplest’ problem by Williams. A mixed-mode
partition theory [1] was developed based on classical beam theory. Ref. [2] reported a combined
numerical and analytical theory by Schapery and Davidson based on combined classical beam
theory and 2D elasticity. It disagrees with the Williams’ theory [1] and concludes that classical
beam theory does not provide quite enough information to obtain an analytical decomposition of the
mixed-mode ERR into its opening and shearing mode components. Hutchinson-Suo reported their
work in Ref. [3] in which the mixed-mode ERR is calculated based on the classical beam theory but
the partition of ERR is calculated based on stress intensity factors from 2D elasticity. Their theory
[3] agrees well with the theory in Ref. [2] and claims that Williams’ theory [1] contains conceptual
errors. To respond to this claim, Williams reported some experimental work in Ref. [4] showing that
Williams’ theory [1] is in a better agreement with the test results than Hutchinson-Suo theory [3].
This has caused a lot of confusion, which has affected many academic researchers and design
engineers until today. A great deal of research effort has been made during the last two decades to
resolve the confusion. Among many others, the following significant works are referenced here. Ref.
[5] reported a mixed-mode partition theory for laminated composite beams with rigidly bonded
interface based on first-order shear-deformable beam theory, which gives different mixed-mode
partitions to those from Williams’ theory [1] and the Hutchinson-Suo theory [3]. The same theory as
that in Ref. [5] was derived in Refs. [6, 7] but these are based on classical beam theory, which
caused yet more confusion. Recently, the authors have developed analytical theories for
one-dimensional delamination in laminated composite beams and plates by using a novel
methodology [8-13]. All the confusion is explained. This paper reports some of the major results in
Refs. [8-13].

2. Partition of mixed-mode fracture in laminated composite beams and plates
with rigid interfaces

The mechanics of delamination depend on the mechanical properties of lamina interfaces. A lamina
interface is considered to be a rigid interface when the interface separation is negligible before an
existing delamination propagates. Otherwise, it is considered to be a non-rigid interface or as it
often called, a cohesively bonded interface. Bare-bonded interfaces in the conventional
manufacturing process from glass or carbon fiber epoxy pre-pregs are typical rigid interfaces
because of their brittleness. While cohesively bonded interfaces are typical non-rigid interfaces
which are achieved by adding adhesive layers between bare plies when manufacturing components.

2.1. Laminated composite DCBs

A laminated composite DCB with a delamination of length « is shown in Fig. 2 (a). The interface
stresses in Fig. 2 (b) only show the sign convention rather than any representative distribution.
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Figure 2. A laminated composite DCB and its loading conditions. (a) General description. (b) Details of the
crack influence region Aa.

2.1.1. Classical beam partition theory

Using the constitutive relation in classical laminated composite beam theory, the ERR at the crack
tip at location B, G is

12 M152 .\ szz ~ |\/|B*2 N NlEZ .\ szz ~ NB*Z _2BMisNyg _ 2B,MysNy | 2BMoN, | )y

2b’ | D; D, D AA A B, B; B

where subscript ‘B’ indicates loads at the crack tip at location B, for example, M,; is the bending

moment on the top sub-laminate at the crack tip. These loads are shown in Fig. 2 (b). Other
quantities in Eq. (1) are

A*:A_Biz/Di ) Bi*:Biz_AiDi ' Di*:Di_BiZ/A 2)

The range of subscript i is 1 and 2, which again refers to the upper and lower sub-laminates

respectively. For the intact laminate, the subscript i is dropped. A, B and D are the
equivalent extensional, coupling and bending stiffness of the DCB respectively.

G:

A novel methodology to partition mixed-mode ERR G in Eq. (1) arises from the fact that G is
of quadratic form and non-negative definite in terms of the crack tip bending moments M,;and
M, , and the crack tip axial forces N,; and N,,;. An analogy of this is the positive definite
Kinetic energy of a vibrating structure, to which individual modal energies are attributed by using
modal analysis from orthogonal natural vibration modes. A hypothesis is then made that the total
ERR in a mixed-mode delamination can be partitioned into pure mode components by using
orthogonal pure modes. There are two sets of fundamental orthogonal pure modes. The first set
corresponds to zero relative shearing displacement just behind the crack tip (mode I) and zero crack
tip opening force ahead of the crack tip (mode I1). The second set corresponds to zero relative
opening displacement just behind the crack tip (mode Il) and zero crack tip shearing force (mode I).
It is simple to derive the zero relative displacement modes first and then to find the zero force
modes by applying orthogonality through Eq. (1). An alternative and more complex derivation

considers the interface stresses. If the mode vector form is {M,;,M,5, N5, N, ", then the first set
of fundamental orthogonal pure modes, referred to as the {#, 4} set, are found to be

1 1 1 1 1 1

o 0 0 1 0 0
{¢91 }: 0 ! {(pe }: 02 ! {¢H3 }= 0 ) {¢ } = f) y {{0,;2 }: ,Bz y {¢ 5 } = 0 (3)
0 0 0, 0 0 Bs

with
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The second set of fundamental orthogonal pure modes, referred to as the {49’, ﬂ’} set, has the same
format as that of the first set in Eq. (3), but with

2D° B B') D D
B° A A 4D') 2D B B
h B) 1
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()

g=-1, 6,=

0; = (6)
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, D, , A , B,
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Any four fundamental pure modes from either the first set or the second set can be used to partition
a mixed mode. The partitions are given below.

M N N M N N
GIE :CIE(MlB _ Vi "Nip _ 'NoB J(MlB _ 2’B _ l'B _ ZrBJ (8)
B B b B B P
M N N M N N
GIIE =CIIE(MlB - HZB - 6,18 - 6,28 J(Mls - 92,8 o 91,8 o ;Bj (9)
1 2 3 1 2 3
where
o). 6] *
Cie :Gé.1 [1——0(1——%} v Cue :Gﬁl{ 1—£]{1—£}ﬂ (10)
B B o, o,
and
2 2 B 2 2
€1=i2 1*+01*_% . G, =i2 i*_i_ﬂl*_w (11)
2b°| D D, D t2b _Dl D, D

The partitions in Egs. (8) and (9) use both sets of orthogonal pure modes. The partition theory in
Ref. [1] only gives the {#], B/} pure modes correctly. The partition theories derived in Refs. [6,7]
is equivalent to using only the first set of pure modes to partition a mixed-mode. The methodologies
used in Refs. [6,7] are not able to find the second set of pure modes. The partitions are easily
reduced for isotropic materials. With a thickness ratio y = h,/h, now introduced, they are
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where c. and c,. are still given by Eq. (10) and Nz, = N,;; —N,;/7 . The pure mode
relationships are now as follows:

6 =- 2 y 6, =—— ) 6 = , B =—F fO #1 ) B —1f0 =1 1

’ i 6(1+7/) ’ 3
0=-1, 0 =- . B = 15
1 2 hl(1+}/3) Bi=r (15)
The isotropic G, and G, forusein Eq. (10) are
24y G __ 12/(+y)

G, = Eb2|’113(1+7/) 1 g _—szhlg(1+37/)2 (16)

2.1.2. Shear deformable beam partition theory

In the absence of crack tip shear forces, the total ERR G in a mixed-mode fracture is still given by
Eqg. (1) within the context of the first order shear deformable laminated composite beam theory.
However, the two sets of fundamental orthogonal pure modes now coincide at the first set, i.e. the
{6, B} setand the partitions of the total G are given by

2 2
M N N M N N

GIT =CIT£MlB -8 ZBJ , GIIT =CIIT(MlB -8B ZBJ (17)
b B B 6 6, 6

Cir :Gel[l_%J_ v Cir :Gﬂl[ _%j_ (18)

When crack tip shear forces Pj , P,z are present, the following two terms need to be added to the
mode | ERR in Eq. (17):

b
_ (H1P2|3 - H2P1|3)2 , aalAGelP _ﬁ(ﬁ_h]{M[i.ke_f_Mj] 2 (129)

where

P 2b%H,H,(H,+H,) “b?\H, H,)H+H,\D D, D
where H, and H, are the through-thickness shear stiffnesses and
a, = Mosf, + Nig B, =My 5.3, + Nos/y (20)
ﬂz (‘91 - ﬂl) ﬂs (61 - ﬂl)
In the case of layered isotropic DCBs, these partitions reduce to
2 2
G :CIT(MlB _M_Mj » Gir :CHT(Mm_M_hj (21)
ﬂl /82 01 HZ
The mode | contribution from crack tip shear forces reduces to
(7P15 - PZB)Z 4\/§0(91 (7’PlB - PZB)

= , a = (22)
ThKG(Lty) T (14 )KPGLE)
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2.1.3. 2D elasticity partition theory

One averaged partition theory is obtained by averaging the classical and shear deformable partitions.
This partition has been found to give an excellent approximation to the partition from 2D elasticity.
The mode | and Il components of the ERR from the averaged partition theory denoted by G, and
G, respectively. They are

G, :(GIE +GIT)/2+GP +a6’1A601P , Gy :(GIIE +GIIT)/2 (23)

2.1.4. Local and global partition theories

When ERR is calculated right at the crack tip, i.e. using an infinitesimally small region around the
crack tip, it is called a local calculation. When it is calculated using a finite small region, it is called
a global calculation. In terms of the finite element method (FEM), an infinitesimally small region
means one element length in a very fine mesh, whilst a finite small region means multiple element
lengths. When global ERR calculation is used, the above three local partition theories, i.e. the
classical, shear-deformable and 2D partition theories give the same partitions as that of the local
classical partition theory. That is, the classical partition theory unifies the three theories in a global
partition. The differences between the three local theories arise from the differences of the crack tip
stresses in the three theories. However, the global distribution of interfacial stresses is governed by
the classical beam and plate theory.

2.2. Clamped-clamped laminated composite beams

A clamped-clamped composite laminated beam with a symmetric delamination is considered. The
loads P, and P, are applied at the mid-span. The pure mode | mode in the first set of orthogonal
pure modes in classical beam theory, i.e. the {8, B} set, is given by
Pz/Plzap :_B;(ZBl*‘hlA&)/[B:(ZBz_thz)] (24)
Its orthogonal pure mode Il mode P,/P, =/, is too complex to be presented here algebraically.
The second set of orthogonal pure modes in classical beam theory, i.e. the {9’, ,6”} set is given by
6, =P/R=-1, P/R=4;=D,/D; (25)
Within the context of shear deformable beam theory, the expressions for P,/P, =6, pure mode I
and P,/P, =/, pure mode Il are too complex to be presented here algebraically. However, when

the through-thickness shear effect is not excessively large, they are very close to those in classical
beam theory.

2.3. Clamped circular layered isotropic plates

A clamped circular layered isotropic plate with a central delamination and central loads P, and P,
are considered. The first set of orthogonal pure modes in classical plate theory are found to be
Pz/Pl:eP:e ) PZ/P:L:ﬂP:ﬁl (26)
where ¢, and g, are given in Eq. (14). The corresponding ERRSs are given by
G, =3R(-v?)/REn' 7 (L+7)| | G, =9PZli—v? )i+ y)/2ER 2@+ 3 ] (27)
The second set of pure mode | and Il modes are the same as those in Eq. (15). In the first order

shear deformable plate theory, the first set of pure modes is approximately pure and the second set
disappears.
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3. Partition of mixed-mode fracture in layered isotropic DCBs with non-rigid
interfaces

3.1. Classical beam partition theory

The mode | ERR G is considered first. The interface normal stress o, is found to be

= —Eny /3 ) [W + 32— y)/ (2hy)a®] (28)
where W=w, - W, and u=1u,—0, are the relative opening and shearing displacements at
interface. The mode | ERR is then found by using J-integral.

G = c!;[nw{daf j o dwdx} [ o, (29)
Substituting Eq. (28) into Eq. (29) gives
G :GILE +(1+37)/[b(1+7)3](P23 _ﬂlPlB)V_Vél) (30)

The first term G =G,; in Eq. (20) and the W in the second term is the relative crack tip

rotation. It is seen that Eq. (30) is not completely analytical due to the second term. It is more
important to note that the second set of orthogonal pure modes is not present. The mode Il ERR can
be considered similarly. The interface shear stress 7, is found to be

Ts = z-sP + Tsa + TSU (31)
with
rp =3(y"Py + Pyg 200+ 7)] . 7, =301-)/(20y)[ on0x , 7 =EhyT® /[40+ )] (32)
The mode Il ERR G, isthen calculated by using J-integral.
Gie =Gye + J:B pdUg (33)

The first term G =G,; in Eq. (20) and the second term can be calculated for a given cohesive
law.

3.2. Shear deformable beam partition theory

It is simple to verify that the mode Il ERR G,; remains the same as the G, in Eq. (33).
However, the mode | ERR G,; needs reconsideration. The governing equation for the interface
normal stress o, is

o ~ 26, = a[W? +31-)/(2hy)u®) (34)

where 1 =(1+7)/(h)(3k*G,, /EJ”* and & =k?Ghy/(1+7). By using the method of parameter
variation, the solution to Eq. (34) is found.
o, =Ce™ +ce + al W+ W + 300 (1— )/(2h )]

X X X x 35
+al/ Z(e*X IO we “dx - | We“dxj +3a(1-y)/ (4hl;/)(elX J'O e dx+e™™| T e*xdx) (39)

The two integration constants ¢, and ¢, are determined wusing the conditions
o,(Aa)=c®(Aa)=0.

¢, =—akf2 J.OAav_ve*“dx — 302 (1-y)/(ahy) jOA"" e dx (36)
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¢, =a®/2 | We*dx—3ai(1- y)/(4hy)|[ we dx (37)
Then, mode | ERR is found using J-integral.
Gy == My /00, + (W f 2+ 3L y)/(2hyy ) [ * 0, o)
= [ 0,4W, + 0, (W, - W,,, )+ (WP /2
Note that the first term in Eq. (38) is calculated from a given interface cohesive law with
o, =—#M,, /b+3a(l-y)/(2hy)us® inwhich

Moy = L+37) [+ 7) (B = Mg )+ by (L= 7) [120L+ 1) INyg, (39)

and
Uél) = _(672M15 +6M g + 7/2hlleBe )/(Ebh1272) (40)
In the case of a rigid interface the first two terms in Eq. (40) disappear and the third term reduces to
G, =G, in Eg. (20). For a non-rigid interface the first term in Eq. (38) is calculated based on the

given cohesive law and the second and third terms are not able to be determined analytically.
However, for most of practical engineering problems with hard interfaces the third term in Eq. (38)

can be replaced by G, in Eq. (20). Therefore, w, in Eq. (38) can be calculated by using a given
interface cohesive law and the following:

GlLT = J:B (JnB — 0, )dV—VB (41)

Bo|

Therefore, the second term in Eq. (38) is found and the mode | ERR G,; for a hard interface is
obtained analytically.

3.3. 2D elasticity partition theory

A DCB under crack tip bending moments M,; and M,; is considered here. Refer to Ref. [12]
for general loading conditions. By using the two sets of fundamental orthogonal pure modes, i.e.
{0, p} in Eq. (14) and {0, B’} in Eq. (15), approximate orthogonal pure mode | and mode Il
modes are

0, (k. )= 0y, +1/12(60y, — Oys)logk,, +1/2(6y, — 26y, + O, logk,, )’ (42)

IBN (ker): ﬂNZ +1/ 2(IBN1 —ﬂN3)|Og ker +1/2(ﬂNl - ZﬂNZ +IBN3)(IOg ker )2 (43)
where k, =k/E is the ratio of interface stiffness to Young’s modulus. 6,, 6,, Gys» Bui
Pn,s BPus are functions of the two sets of fundamental orthogonal pure modes. Detailed

expressions for them are given in Ref. [12]. A mixed mode can be partitioned using this pair of pure
modes.

4. Numerical and experimental assessments

The partition theories presented above have been extensively validated by using FEM simulations
and in general excellent agreement has been observed [8-13]. Here, one example is presented for an
isotropic DCB with non-rigid interface. The geometric dimensions of the DCB are length
L =110 mm, width b=1mm, total thickness h, +h, =2mm and crack length a=10mm. The
material Young’s modulus is E =1GPa. The loading conditions are M,; =1 Nm and M,; =0.
Mixed-mode partitions from the present 2D elasticity theory and Abaqus FEM are recorded in
Table 1 for various thickness ratios » and interface stiffness to Young’s modulus ratios k. . An

-8-
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excellent agreement is observed between the analytical and FEM results. Note that G, /G in

Table 1 is a percentage.

Table 1. Comparison between present 2D elasticity partition theory and FEM results.

Analytical (x10° N/m)

FEM (x10° N/m)

7 Ky 0.1 0.5 1 5 10 0.1 0.5 1 5 10

1 G, 3.000 3.000 3.000 3.000 3.000 3.029 3.029 3.028 3.024 3.022
G, /G 5714 5714 5714 5714 5714 5766 57.60 57.79 5859 59.22

3 G 4530 43.75 4299 4218 40.17 4512 44.09 43.48 41.47 40.29
G, /G 9587 9259 9098 89.26 8501 9472 9271 9156 87.96 85.97

5 G 159.7 1549 1520 148.6 139.7 159.0 156.4 1547 148.6 144.7
G, /G 99.05 96.06 9424 9216 86.61 97.80 96.39 9550 92.44 90.59

7 G 3819 3715 3643 3558 3320 380.7 3754 3718 358.2 349.1
G, /G 9965 9694 9506 9283 86.63 9859 97.46 96.72 94.07 92.40

9 G, 748.0 7289 7145 6970 647.6 7463 736.6 729.8 703.7 686.0
G, /G 99.83 97.29 9536 93.03 86.43 98.92 9795 97.30 9492 93.39

One example of experimental assessments is also presented here. Since the specimens in the tests
were manufactured without adhesive layers [4] the laminar interfaces are considered to be rigid.
Five partition theories, i.e. Williams theory [1], Suo-Hutchinson theory [3], Wang-Harvey classical,
shear deformable and 2D theories, are assessed in Fig. 3. Although the Suo-Hutchinson and
Wang-Harvey 2D partition theories are considered to be most accurate, the Wang-Harvey classical
theory agrees the best with experimental data. It is suggested that the propagation of mixed-mode
delamination on rigid interfaces is governed by the global partition as the global partitions of shear
deformable and 2D partition theories are the same as the classical partitions.

0.4

0.2

Gy (kN/m)

0.1

0.0

e Williams’s [1] theory
Hutchinson and

4 Suo’s [3] theory
Wang-Harvey

classical theory
Wang-Harvey

shear deformable theory
Wang-Harvey

2D elasticity theory
= Linear failure locus

Linear fit
(Williams’s [1] theory)

0.0

0.1

0.2

0.3

0.4

GH (kN/m)

Figure 3. A comparison of various partition theories and the linear failure locus for
epoxy-matrix/carbon-fiber composite specimens.

07| __ Linear fit (Wang-Harvey
classical theory)
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5. Conclusions

The present work discovers the most fundamental fracture modes — the two sets of orthogonal pure
modes. A mixed-fracture mode can be superimposed or partitioned by these most fundamental pure
modes. The two sets co-exist in classical laminated composite beams and plates and coincide in
shear deformable beams and plates for rigid interfaces. When non-rigid interfaces considered the
two sets coincide in both classical and shear deformable theories. By using these two sets of pure
modes, a mixed-mode can also be partitioned based on 2D elasticity theory. The novel methodology
is rooted in the mechanics of material and operated by a powerful mathematical method. It is
capable of studying delamination in curved laminated composite beams and shells as well. It is also
capable of studying general and buckling driven delamination consisting of all opening, shearing
and tearing modes.
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