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Abstract  Generalized continuum theories such as couple stress theory have the potential to improve our 

understanding of material deformation and fracture behaviour in areas where classical continuum theory 

breaks down at, for example, the length scale of meso-scale features within the fracture process zone. The 

couple stress theory considers not only relative displacements between these features but also relative 

rotations, introducing a natural length scale. A model has been developed of a low stiffness matrix containing 

suitably situated high stiffness particles to simulate the presence of defects at the meso-scale. This has been 

used to assess the descriptive potential of a novel consistent couple stress theory. The model has been 

subjected to a set of displacement fields selected to produce strain energies with varying contributions from 

the coupled stresses. The results demonstrate the effect of particle size to spacing ratio on the elastic energies. 

These can be used to evaluate the couple stress constant as well as validate the constant experimentally for 

specific materials.  
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1. Introduction 
 
Analysis of materials at engineering length scales is based upon assumptions of classical continuum 
behaviour. This is adequate for most macro-scale analyses but, when considering smaller length 
scales where cracks, notches and defects introduce stress concentrations, the material microstructure 
is known to have a significant impact on material behaviour [1]. Local approaches, which 
incorporate mechanistic understanding of material failure behaviour at the length scale of their 
relevant features, are beneficial for linking microstructures to macroscopic responses [2]. However, 
the widely used weakest link (WL) assumption has been challenged as a realistic method of 
modelling size effects in cleavage [3] and quasi-brittle fracture [4] as a result of failing to account 
for the interaction processes during failure. 
 
Discrete methods have shown promise for modelling materials undergoing such fracture. Lattice 
models consist of nodes connected into a lattice via springs [5], beams [6] or other discrete elements 
with the properties of these connections allowing a micro structurally informed response. Lattice 
modelling differs in principle from previous local approach models by using a statistically parallel 
system, where loads are redistributed upon the breaking of a single bond, rather than the ultimate 
failure seen in WL systems. This is considered to be a closer representation of the interaction and 
coalescence of micro-cracks and flaws, which characterize quasi-brittle materials such as graphite 
[7] and cement-based materials [8]. The work presented here explores aspects of the site-bond 
model developed by Jivkov and Yates [9] and used for studies of damage evolution from distributed 
porosity in cements [10]. Work on this model has shown that evaluating the stiffness coefficients of 
the bonds using strain energy equivalence between the discrete model and a classical continuum 
creates an indeterminate problem. Use of a generalized continuum theory, such as couple stress 
theory, offers a possible solution to this indeterminacy.  
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In couple stress theory (CST) each point within the continuum has three additional degrees of 
freedom, point rotations. These are associated with couple stresses as the classical (force) stresses 
are associated with strains. A general CST was proposed early in the 20th century by the Cosserat 
brothers [11]. It went largely unnoticed until the 1960s when a desire to understand the mechanisms 
behind micro-crack growth for more accurate crack assessment rejuvenated interest. One branch of 
CSTs considers point micro-rotations to be independent of the macro-rotations; the rotations derived 
from the displacement gradient [12, 13]. These are known as micropolar theories or Cosserat 
models with free rotations [14]. While such a view appears to be well suited for use with discrete 
lattice methods, it is difficult to establish a link between a continuum and a discrete representation 
of a material containing features that are following the deformations of the bulk. For such situations 
it is more plausible to assume that the micro-rotations are equal to the macro-rotation. This 
assumption led to a branch of CSTs known as Cosserat models with constrained rotations [14, 15]. 
Initially, these were based on couple stresses work-conjugate to the macro-rotation gradient. As a 
consequence, the spherical part of the couple stress tensor remained undetermined. Recently, 
Hadjesfandiari and Dargush [16] proposed a consistent CST using true kinematic quantities to 
remove the indeterminacy of the couple stress tensor. 
 
The consistent CST [16] naturally introduces a length parameter. This is of key importance for the 
local material behaviour. But the calibration of the CST requires that the length parameter is 
physically related to the material microstructure; the sizes and distances between characteristic 
features that disturb the symmetry of the stresses. We report on work in progress investigating 
whether a medium with features can be used to calculate bond responses to bending and torsion in 
the discrete model [9] and if this can be used to calibrate the consistent CST. 
 
2. Theory and model 
 
2.1 Generalised continuum 
 
The kinematics of a material point under small deformation is given by the displacement gradient, 
Eq. (1), where comma denotes differentiation, rounded parenthesis denotes symmetric part and 
square parenthesis denotes skew symmetric part of the tensor. The symmetric (strain tensor eij) and 
the skew symmetric (rotation tensor ωij) parts are given by Eq. (2) and Eq. (3), respectively. The 
right hand side of Eq. Error! Reference source not found. gives the rotation tensor as a vector 
using the permutation tensor. 

, 	 , 	 ,             (1) 

, 	 	 , 	 ,           (2) 

, 	 	 	 , 	 ,        (3) 

In classical continuum mechanics, the elastic potential depends solely on the strain tensor. In 
generalised continuum, additional potential is carried by the gradient of the rotation vector, Eq. (4). 
The symmetric part of this gradient, χij in Eq. (5), represent “pure” twists, and the skew symmetric 
part, κij in Eq. (6), represent “pure” curvatures, which can be given by a vector as shown with the 
right-hand size. 

, 	 , 	 ,             (4) 

, 	 	 	 , 	 ,          (5) 
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, 	 	 	 , 	 ,        (6) 

Generally, the energy potential of the rotation gradient leads to a non-symmetric force stress tensor, 
σji, Eq. (7), and the introduction of a couple stress tensor, μji, Eq. (8). When the force stress is taken 
as work conjugate to the strain tensor, and the couple stress is taken as work conjugate to the 
gradient of the rotation, the symmetric part of the couple stress tensor becomes indeterminate. 

	 	             (7) 
	 	             (8) 

Hadjesfandiari and Dargush [16] suggested a solution to this problem by demonstrating that the 
entire rotation gradient does not have energy potential, only the curvature tensor, Eq. (6). Thus the 
deformation energy consists of the work done by the force stress on the strain and the work done by 
the couple stress on the pure curvature. The symmetric part of the rotation gradient, Eq. (5), has no 
forces associated with it, which solves the problem of the indeterminate spherical part of the 
rotation gradient. For an isotropic material, the elastic potential is given by [16]: 

, 	 	 	 	 	 	8 	       (9) 

where λ and μ are Lamé parameters and η is a material couple stress constant.  
 
According to this theory, a homogeneous displacement field, such as hydrostatic compression Eq. 
(10), does not introduce rotations and hence curvatures. 

	 								 						 	                             (10) 
A displacement field producing pure twist, Eq. (11), introduces rotations, Eq. (12), but no true 
curvatures[16]:  

	 								 	 								 	0                    (11) 

	 								 	 								 	                 (12) 

A displacement field corresponding to pure bending of a beam, Eq.    (13), introduces non-zero 
rotations, Eq.                                    (14), that result in a single non-zero 
curvature, Eq.               (15) , [16]: 

	 								 	 							 	    (13) 

	 								 	                                    (14) 

	                                       (15)  

where  is Poisson’s ratio and R is the radius of curvature of the beam central axis. 
 
2.2 Discrete site-bond model 
 
The site-bond model [9] uses a discrete lattice, based on a regular tessellation of material space into 
truncated octahedral cells, Fig. 1(a). The lattice derives from the cellular structure when material 
particles, attached to cell centres, interact via deformable bonds. The bond properties relate to their 
ability to transfer shear and axial forces as well as torsion and bending moments to satisfy the six 
degrees of freedom of each site. A site requires 14 bonds to connect it to its neighbours, Fig. 1(b): 
six bonds of length 2L (2L is the cell size) in principal directions (through square faces), and eight 

bonds of length √3L in octahedral directions (through hexagonal faces). Development of this 
model involves bond representations with six independent elastic springs resisting three relative 
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displacements and three relative rotations between sites. This yields four spring types with axial, Kn, 
shear, Ks, twisting, Kt, and bending, Kb, stiffness  [17], which could, in general, be different for 
principal and octahedral directions. 

     
Figure 1. Cellular representation of material (a); and unit cell with bonds (b). 

 
2.3 FE model of elastic continuum with rigid particles 
 
For our investigation, we use a finite element model of a cube of an elastic material surrounding a 
truncated octahedral cell of size 2L. The material has a unit modulus of elasticity and Poisson’s ratio 
= 0.375. Rigid cubic particles are introduced in the cube, so that one particle, P0, is positioned in 
the centre of the cell, while others are positioned outside the cell in the principal and octahedral 
directions as shown in Fig. 2. Three different loading conditions are used: (H) hydrostatic 
compression; (T) pure twist; and (B) pure bending. These are applied via displacement fields on the 
cube surfaces; examples for pure twist and pure bending are given in Fig. 3. In all cases we 
calculate elastic energies, , within the unit cell surrounding the central particle. With no particles 
present, the cell elastic energy is given by the classical continuum solution, since no features exist 
to disturb stress symmetry. The displacement magnitudes for the three loading cases are selected so 
that  without particles is the same, 0. 
 

   
Figure 2. Particle additions in the principal (left) and octahedral (right) directions. 

 

     
Figure 3. Displacement maps for the loading cases of pure twist (left) and pure bending (right). 
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To link the cell energies to kinematic quantities we calculate particle translations and rotations using 
three unit vectors, n1, n2 and n3 normal to three orthogonal faces of a particle, see Fig. 4. After 
deformation these vectors remain orthogonal as the particles are rigid, given with t1, t2 and t3 in 
Fig. 4. The coordinates of these, arranged in columns, form the transformation matrix, T, for the 
particle. The particle motion can be represented by a single rotation, θ given by Eq. (16), around a 
normalized axis, α given by Eq. (17). The components of the rotation vector for a particle are 
calculated by Eq. (18). The relative rotations between central and any other particle are expressed in 
the coordinate system defined by the particular pair using the corresponding transformation. 

	 	
           (16) 

	
	 	

	 	           (17) 

	 	 	 ,					 1, 2, 3          (18) 
 

 

Figure 4. Orthogonal vectors, (n1, n2, n3) and (t1, t2, t3) describing the orientation of P0 before and after 

deformation respectively. 

 

3. Results and Discussion 
 
For the particle arrangement used (a central particle and all 14 particles of the site-bond model) we 
have used four different particle sizes relative to the cell size in order to investigate the effect of cell 

to particle size ratio, . The ratios are 3 (large particles), 4, 6, and 12 (small particles). 
 
In the case of hydrostatic loading no rotations of particles were observed and the relative 
displacements between P0 and any principal or octahedral particle were only axial, conforming to 
Eq. (10). In the site-bond model these relative displacements should be resisted by axial springs 
with stiffness coefficients Kn

p and Kn
o, respectively. The relative axial displacements were found 

independent of , scaling with the applied displacements. The cell energies were found to be 
dependent on , as shown in Figure . For small particles,  = 12, the cell energy approached 0; the 
presence of particles has negligible effect. The cell energy and displacements from this case can be 
used to calibrate a linear combination of Kn

p and Kn
o. Note, that in general this case is not sufficient 

for calibrating stiffness coefficients separately. However, the particle size effect appears to be very 
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small, suggesting that the two stiffness coefficients could be assumed equal and given from the 
continuum solution, following [17] for example.  
 

 
Figure 5. Normalised cell energy vs size ratio under hydrostatic compression. 

 

In the case of pure twist the cell energies were found to be dependent on , Fig. 6. While this is 
similar to the case of hydrostatic compression the effect of particle size is substantially larger. All 
relative displacements between P0 and the principal particles were zero, conforming to Eq. (11). 
The relative displacements between P0 and octahedral particles were zero axial and non-zero 
transversal, again conforming to Eq. (11). This means that the only activated linear springs in the 
site-bond model are the shear springs in octahedral direction with stiffness Ks

o.  
 

 
Figure 6. Normalised cell energy vs size ratio under pure twist 

 
The calculated relative rotations between P0 and the particles in the two directions are shown in Fig. 
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7. The non-zero relative rotations between P0 and principal particles were twists as expected from 
Eq. (12) and the magnitude shown in Fig. 7 is the twist of the particle in direction X1. It is seen that 
this is 3-4 orders of magnitude smaller that the relative rotations between P0 and octahedral 
particles. The latter were found to be bend-type rotations only, conforming to Eq. (12), and 
suggesting that the only moment springs activated are the bending springs in the octahedral 
direction with stiffness Kb

o. The magnitudes of the bend-rotations of octahedral particles were found 
nearly independent of particle size. These results suggest that for the case of pure twist, the elastic 
strain energy is accumulated in the shear and bending springs in the octahedral direction only, and 
one can calibrate a linear combination of Ks

o and Kb
o, which should depend on the cell to particle 

size ratio. From this perspective the results support the analytical derivations in [16], where pure 
twists do not contribute to the elastic energy. From here, it can be speculated that the torsion springs 
in the principal directions could be omitted from the site-bond model, i.e. Kt

p = 0. This should be 
supported by considering other cases with curvature-free displacement fields which introduce twists 
of principal particles according to the theory. 
 

 
Figure 7. Relative rotation vs size ratio under pure twist 

 

The cell energy dependence on  for the case of pure bending is shown in Fig. 8. The effect of 
particle size is smaller than in the case of pure twist, but not negligible. The relative displacements 
between P0 and the octahedral particles were non-zero axial and tangential, conforming to Eq. (13). 
The relative displacements between P0 and the principal particles also conform to theory with 
non-zero axial for particles in X2, non-zero tangential for particles in X1 and zero displacements of 
particles in X3. This means that the activated linear springs in the site-bond model would be axial 
and shear springs in all octahedral directions with stiffness coefficients Kn

o and Ks
o, and axial and 

shear springs in two principal directions with stiffness coefficients Kn
p and Ks

p.  
 
The calculated relative rotations of the particles are shown in Fig. 9. The only non-zero relative 
rotation of principal particles was found to be the bend-type rotation of the particles in X1, 
conforming to Eq. (14). However, this relative rotation was found at least an order of magnitude 
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smaller than the magnitude of the relative rotation between P0 and octahedral particles. The latter 
contains twist and bend components, suggesting an activation of both the torsion and bending 
springs in the octahedral direction with stiffness coefficients Kt

o and Kb
o. The much smaller rotation 

of the principal particles can be used to approximate the kinematics and assume zero rotation of 
principal particles. Thus the elastic energy is taken by the linear springs in all directions and the 
torsion and bending spring in the octahedral direction, allowing for calibration of a linear 
combination of Kn

o, Ks
p, Kn

o, Ks
o, Kt

o and Kb
o, which should depend on the cell to particle size ratio. 

As in the case of pure twist it can be speculated that the bending springs in the principal direction 
can be omitted, i.e. Kb

p = 0, but this needs to be supported by considering other displacement fields 
introducing bend-type rotations of principal particles. It can be further speculated, that the torsion 
stiffness in the octahedral direction should be zero, i.e. Kt

o = 0. This could be deduced from the 
theoretical requirement that pure twists have no energy potential, but requires further investigation. 
If these were shown to be true, the bending case would provide a calibration for the linear 
combination of Kn

o, Ks
p, Kn

o, Ks
o, Kb

o. 
 

  
Figure 8 . Normalised cell energy vs size ratio under pure bending 

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

0 5 10 15

N
o
rm

al
is
e
d
 e
n
e
rg
y,
 Ω
/Ω

0

Cell size / Particle size



13th International Conference on Fracture 
June 16–21, 2013, Beijing, China 

-9- 
 

 
Figure 9. Relative rotation vs size ratio under pure bending 

From the three cases considered in this work, it is clear that a separation between all required 
stiffness coefficients is not possible. However, there is a good indication that the site-bond model 
should not contain torsion springs and possibly bending springs in the principal directions. One way 
to check this is pure twist along the octahedral axis, which theoretically should provide twist and 
bend rotations of all particles. If this proves to be the case, the elastic energy of the continuum with 
features should be taken by the deformations of the remaining springs. Additional loading cases are 
necessary to determine the stiffness coefficients of these springs. If these are determined from 
curvature-free loading cases alone, a good strategy for the calculation of the coupled-stress constant 
can be proposed. The site-bond model with constants calibrated from curvature-free loading cases 
can be subjected to a case introducing curvature energy according to theory, for example pure 
bending, and any excess of energy between the site-bond model and classical continuum should be 
attributed to curvature energy.  
 

4. Conclusions 
 

 We have proposed a methodology for calibrating the spring constants of a special lattice 
model using a micromechanical model of a material containing features. 

 The comparison of the results with the consistent couple-stress theory suggests that some of 
the possible moment springs in the lattice could be omitted, reducing the complexity and 
increasing the correspondence between continuum couple-stress theory and discrete 
representation. 

 We have demonstrated that in all loading cases considered there is an effect of the distance 
to size ratio of the features, which must be taken into account when calibrating the constants. 
This suggests that actual microstructure data needs to be used for calibrating the site-bond 
model. 

 The loading cases considered were not sufficient for complete determination of the spring 
constants of the discrete model. Further work is necessary with loading cases that provide 
different linear combinations of activated springs’ kinematics. 
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 There is the potential that the lattice model, if fully calibrated with curvature-free loading 
cases, can provide a means of determining the couple-stress constant for a material with 
given microstructure properties such as average particle size and distance. 
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